• Title/Summary/Keyword: Membrane phospholipid

Search Result 162, Processing Time 0.023 seconds

Effect of Sodium deoxycholate and Sodium dodecy sulfate on Phospholipid Composition and Phospholiases of Rhizopus oryzae (Rhizopus oryzae의 인지질과 그 분해효소에 미치는 계면활성제의 영향)

  • 윤희주;조기승;최영길
    • Korean Journal of Microbiology
    • /
    • v.24 no.1
    • /
    • pp.38-45
    • /
    • 1986
  • Effect of sodium deoxycholate and sodium dodecyl sulfate on Rhizopus oryzae were investigated. Morphological change was obtained by supplement of these surfactants into culture media during the sumerged culture. In accordance with morphological changes, composition of phospholipid was changed. In case of surfactant-free culture, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine were measured more than 95% of total phospholipid. But cardiolipin and phosphatidylinositol were conspicuously increased by treatment of both sufactants. Presence of phospolipase A, C, and D were detected from mycelium. Phospholipase A and D were activated by supplement of sodium deoxycholate and C was activated by sodium dodecyl sulfate. These results were interpreted in respect of polymorphism of phospholipid and membrane stability against solubilization effect of surfactants.

  • PDF

Studies on Biofunctional Synthetic Membranes -Poly(MTP-co-BMA-co-GMA) membrane-

  • 정석규;박수민
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1992.10a
    • /
    • pp.47-48
    • /
    • 1992
  • Polymer containing monomers with pendant phospholipid polar group, 2-(metha-cryloyoxy) ethyl-2-(trimethylammonium) ethyl phosphate(MTP) were synthesized and blood compatibility of the copolymers was evaluated. Good permeability of biocomponents of molecular weight below 10$^4$ through cellulosic membrane coated with the copolymer of 2-(methacryloyoxy) ethyl-2-(tri-methylammonium)ethyl phosphate, butylmethacrylate(BMA), and glycidyl methacrylate(GMA) was observed, (Fig.1).

  • PDF

A Comprehensive Understanding of Model Lipid Membranes: Concepts to Applications

  • Sonam Baghel;Monika Khurana
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • The cell membrane, also known as the biological membrane, surrounds every living cell. The main components of cell membranes are lipids and therefore called as lipid membranes. These membranes are mainly made up of a two-dimensional lipid bilayer along with integral and peripheral proteins. The complex nature of lipid membranes makes it difficult to study and hence artificial lipid membranes are prepared which mimic the original lipid membranes. These artificial lipid membranes are prepared from phospholipid vesicles (liposomes). The liposomes are formed when self-forming phospholipid bilayer comes in contact with water. Liposomes can be unilamellar or multilamellar vesicles which comprises of phospholipids that can be produced naturally or synthetically. The phospholipids are non-toxic, biodegradable and are readily produced on a large scale. These liposomes are mostly used in the drug delivery systems. This paper offers comprehensive literature with insights on developing basic understanding of lipid membranes from its structure, organization, and phase behavior to its potential use in biomedical applications. The progress in the field of artificial membrane models considering methods of preparation of liposomes for mimicking lipid membranes, interactions between the lipid membranes, and characterizing techniques such as UV-visible, FTIR, Calorimetry and X-ray diffraction are explained in a concise manner.

$\pi$-A properties of phospholipid monolayers by Maxwell-displacement-current-measuring technique (변위전류법에 의한 지질 단분자막의 $\pi$-A특성)

  • 이경섭;전동규;권영수;국상훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.120-123
    • /
    • 1995
  • Maxwell-Displacement-Currnt-Measuring Technique(MDCM) is a simple system for displacement current measuring which consist with two electrodes to the electrometer, With this method, the displacement current flow only when the electric flux density change by the displacement of molecules or charge particles of membrance on the water surface. Thus, It is Possible to detect dynamic behavior of molecules of membrane without any electrical contact with molecule membrane. In this paper, We measure surface pressure, displacement current and dipole moment of phospholipid monolayers on the wafer surface with applied pressure by MDCM and We measured DTA(differential thermal analysis).

  • PDF

Effects of n-Alkanols on the Lateral Diffusion of Total Phospholipid Fraction Extracted from Brain Membranes

  • Chung, In-Kyo;Kang, Jung-Sook;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.16 no.3
    • /
    • pp.191-195
    • /
    • 1993
  • We investigated the effects of n-alkanols on the range and rate of the lateral diffusion of 1, 3-di(1-pyrenyl)propane in the model membranes of total phospholipid fraction extracted from synaptosomal plasma membrane vesicles. n-Akanols increased the range and rate of the lateral diffusion of 1, 3-di(1-pyrenyl)propane in the bulk model membrane structures (inner + outer monolayers) and the potencies of n-alknols up to 1-nonanol increased by 1 order of magnitude as the carbon chain length increases by two carbon atoms. The cut-off phenomenon was reached at 1-decanol, where further icnrease in hydrocarbon length resulted in a decrease in the lateral diffusion. However, significant changes in the 1'/1 value were not observed by methanol (from 100 to 2500 mM), ethanol (from 25 to 800 mM), and 1-propanol (from 10 to 250 mM) over entire concentration.

  • PDF

Functional Characterization of ABCB4 Mutations Found in Low Phospholipid-Associated Cholelithiasis (LPAC)

  • Kim, Tae Hee;Park, Hyo Jin;Choi, Ji Ha
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.525-530
    • /
    • 2013
  • Multidrug resistance 3 (MDR3) is expressed on the canalicular membrane of the hepatocytes and plays an important role in protecting the liver from bile acids. Altered ABCB4 gene expression can lead to a rare hepatic disease, low phospholipid-associated cholelithiasis (LPAC). In this study, we characterized 3 ABCB4 mutations in LPAC patients using various in vitro assay systems. We first measured the ability of each mutant to transport paclitaxel and then the mechanisms by which these mutations might change MDR3 transport activity were determined using immunoblotting, cell surface protein biotinylation, and immunofluorescence. Through a membrane vesicular transport assay, we observed that the uptake of paclitaxel was significantly reduced in membrane vesicles expressing 2 ABCB4 mutations, F165I and S320F. Both mutants showed significantly decreased total and cell surface MDR3 expression. These data suggest two missense mutations of ABCB4 may alter function of MDR3 and ultimately can be determined as LPAC-causing mutations.

Structural Studies of Membrane Protein by Solid-state NMR Spectroscopy (고체상 핵자기공명 분광법을 이용한 막단백질의 구조연구)

  • Kim, Yongae
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.388-392
    • /
    • 2004
  • Structural studies of membrane proteins, importantly involving interpretation of genomics information, many signaling pathway and major drug target for drug discovery, are having difficulty in characterizing the function using conventional solution nmr spectroscopy and x-ray crystallography because phospholipid bilayers hindered fast tumbling and crystallization. Here, we studied the structure of the pf1 coat protein in oriented phospholipid bilayers by home-built solid-state NMR probe. Bacteriophage pf1 was purified from Paeudomonas Aeruginosa and coat protein of bacteriophage pf1 was isolated from DNA and other proteins.