• 제목/요약/키워드: Membrane permeability

검색결과 930건 처리시간 0.037초

Combination of Epstein-Barr Virus-Based Plasmid and Nonviral Polymeric Vectors for Enhanced and Prolonged Gene Expression

  • Choi, Hye;Park, Key Sun;Bae, Seon Joo;Song, Su Jeong;Kim, Kyoon Eon;Park, Jong-Sang;Choi, Joon Sig
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3676-3680
    • /
    • 2012
  • An Epstein-Barr virus (EBV)-based plasmid contains the EBV nuclear antigen 1 (EBNA1) gene and EBV replication origin (oriP) sequence. Since EBNA1 (the only EBV-encoded protein) is combined with oriP, it is replicated simultaneously with chromosomal DNA in human, primate, and canine cells and is faithfully segregated at a stable copy number upon cell division. Consequently, it can be used to stably express gene inserts over a prolonged time in target cells. We have previously shown that the polyamidoamine (PAMAM) dendrimer can be surface-modified with L-arginine. Arginine is present at a high frequency in the transactivator of transcription (Tat) sequences of human immunodeficiency virus (HIV). It presents high membrane permeability and permits effective transfer of DNA inside the cells. In this study, we constructed two kinds of recombinant DNA by inserting the luciferase gene and enhanced green fluorescence protein (eGFP) gene as reporter genes into the pCEP4 plasmid vector. We measured dynamic light scattering (DLS) and zeta potential after preparing PAMAM-based cationic polymer/EBV-based plasmid complexes. We performed transfection of HEK 293 cell lines with the polyplexes, and monitored luciferase activity and green fluorescence protein (GFP) expression. Our results show that PAMAM-based cationic polymer/EBV plasmid complexes provide enhanced and sustained gene expression.

소형 고분자 연료전지 스택의 체결압력에 따른 성능 특성 (The Effect of Stack Clamping Pressure on the Performance of a Miniature PEMFC Stack)

  • 김병주;임성대;손영준;김창수;양태현;김영채
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.499-504
    • /
    • 2009
  • The effect of gas diffusion layer (GDL) compression caused by different stack clamping pressures on fuel cell performance was experimentally studied in a miniature 5-cell proton exchange membrane fuel cell (PEMFC) stack. Three stacks with different GDL compressions, 15%, 35% and 50%, were prepared using SGL 10BC carbon fiber felt GDL and Gore 57 series MEA. The PEMFC stack performance and the stack stability were enhanced with increasing stack clamping pressure resulting in the best performance and stability for the stack with higher GDL compressions up to 50%. The excellent performance of the stack with high GDL compression was mainly due to the reduced contact resistance between GDL and bipolar plate in the stack, while reduced gas permeability of the excessively compressed GDL in the stack hardly affected the stack performance. The high stack clamping pressure also resulted in excessive GDL compression under the rib areas of bipolar plate and large GDL intrusion into the channels of the plate, which reduced the by-pass flow in the channels and increase gas pressure drop in the stack. It seems that these phenomena in the highly compressed stack enhance the water management in the stack and lead to the high stack stability.

Donepezil, Tacrine and $\alpha-Phenyl-n-tert-Butyl Nitrone$ (PBN) Inhibit Choline Transport by Conditionally Immortalized Rat Brain Capillary Endothelial Cell Lines (TR-BBB)

  • Kang Young-Sook;Lee Kyeong-Eun;Lee Na-Young;Terasaki Tetsuya
    • Archives of Pharmacal Research
    • /
    • 제28권4호
    • /
    • pp.443-450
    • /
    • 2005
  • In the present study, we have characterized the choline transport system and examined the influence of various amine drugs on the choline transporter using a conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) in vitro. The cell-to-medium (C/M) ratio of $[^3{H}]choline$ in TR-BBB cells increased time-dependently. The initial uptake rate of $[^3{H}]choline$ was concentration-dependent with a Michaelis-Menten value, $K_{m}$, of $26.2\pm2.7{\mu}M$. The $[^3{H}]choline$ uptake into TR-BBB was $Na^{+}-independent$, but was membrane potential-dependent. The $[^3{H}]choline$ uptake was susceptible to inhibition by hemicholinium-3, and tetraethy-lammonium (TEA), which are organic cation transporter substrates. Also, the uptake of $[^3{H}]choline$ was competitively inhibited with $K_{i}$ values of $274 {\mu}M, 251 {\mu}M and 180 {\mu}M$ in the presence of donepezil hydrochloride, tacrine and $\alpha-phenyl-n-tert-butyl nitrone$ (PBN), respectively. These characteristics of choline transport are consistent with those of the organic cation transporter (OCT). OCT2 mRNA was expressed in TR-BBB cells, while the expression of OCT3 or choline transporter (CHT) was not detected. Accordingly, these results suggest that OCT2 is a candidate for choline transport at the BBB and may influence the BBB permeability of amine drugs.

대황견우산(大黃牽牛散) 에탄올 추출물의 Methicillin 내성 Staphylococcus aureus에 대한 항균활성 연구 (A Study on Antibacterial Activity of Daehwanggeonwoo-san(Dahwangqianniu-san) Ethanol Extract against Methicillin-Resistant Staphylococcus Aureus)

  • 박주영;나용수;오공천;이상미;최병권;이윤승;송용선
    • 한방재활의학과학회지
    • /
    • 제28권2호
    • /
    • pp.21-35
    • /
    • 2018
  • Objectives The objective of this study is to determine the antimicrobial effect of Daehwanggyeonu-san(Dahwangqianniu-san,DGE) and synergistic effects with antibiotics oxacillin, ampicillin, and gentamicin against Methicillin-Resistant Staphylococcus aureus(MRSA). Methods The antibacterial activity of DGE extract was evaluated againest MRSA strains by using the Disc diffusion method, broth microdilution method(minimal inhibitory concentration; MIC), checkerboard dilution test. The checkerboard dilution test was used to examined synergetic effect of oxacillin, ampicillin, gentamicin, ciprofloxacin with DGE extract. Results DGE showed antimicrobial activity against MRSA with an MIC value of $125{\sim}250{\mu}g/mL$. In the checkerboard test, the interation of DGE with all tested antibiotics produced almost synergy or partial synergy against MRSA. Conclusions This study shows that DGE reduced the MICs of several antibiotics tested, and a remarkable antibacterial effect of DGE, with membrane permeability enhancers and ATP synthase inhibitors. This study can be a valuable source for the development of a new drug with low MRSA resistance.

약물의 in vitro 투과 실험을 위한 사람의 비강점막상피세포 단층막의 일차배양 (Primary Culture of Human Nasal Epithelial Cell Monolayer for In Vitro Drug Transport Studies)

  • 유진욱;김유선;이민기;노환중;이치호;김대덕
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권1호
    • /
    • pp.21-26
    • /
    • 2002
  • The primary culture of human nasal epithelial cell monolayer was performed on a Transwell. The effect of various factors on the tight junction formation was observed in order to develop an in vitro experimental system for nasal transport studies. Human nasal epithelial cells, collected from human normal inferior turbinates, were plated onto diverse inserts. After 4 days, media of the apical surface was removed for air-liquid interface (ALI) culture. Morphological characteristics was observed by transmission electron microscopy (TEM). A polyester membrane of $0.4\;{\mu}m$ pore size was determined as the most effective insert based on the change in the transepithelial electric resistance (TEER) value as well as the $^{14}C-mannitol$ transport study. The ALI method was effective in developing the tight junction as observed in the further increase in the TEER value and reduction in the permeability coefficient $(P_{app})$ of $^{14}C-mannitol$ transport. Results of the transport study of a model drug, budesonide, showed that the primary culture system developed in this study could be further developed and applied for in vitro nasal transport studies.

Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis

  • Wang, Mingyang;Zhao, Yan;Cao, Lingfang;Luo, Silong;Ni, Binyan;Zhang, Yi;Chen, Zeliang
    • Journal of Veterinary Science
    • /
    • 제22권1호
    • /
    • pp.4.1-4.13
    • /
    • 2021
  • Background: Microsporum canis is a zoonotic disease that can cause dermatophytosis in animals and humans. Objectives: In clinical practice, ketoconazole (KTZ) and other imidazole drugs are commonly used to treat M. canis infection, but its molecular mechanism is not completely understood. The antifungal mechanism of KTZ needs to be studied in detail. Methods: In this study, one strain of fungi was isolated from a canine suffering with clinical dermatosis and confirmed as M. canis by morphological observation and sequencing analysis. The clinically isolated M. canis was treated with KTZ and transcriptome sequencing was performed to identify differentially expressed genes in M. canis exposed to KTZ compared with those unexposed thereto. Results: At half-inhibitory concentration (½MIC), compared with the control group, 453 genes were significantly up-regulated and 326 genes were significantly down-regulated (p < 0.05). Quantitative reverse transcription polymerase chain reaction analysis verified the transcriptome results of RNA sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the 3 pathways of RNA polymerase, steroid biosynthesis, and ribosome biogenesis in eukaryotes are closely related to the antifungal mechanism of KTZ. Conclusions: The results indicated that KTZ may change cell membrane permeability, destroy the cell wall, and inhibit mitosis and transcriptional regulation through CYP51, SQL, ERG6, ATM, ABCB1, SC, KER33, RPA1, and RNP genes in the 3 pathways. This study provides a new theoretical basis for the effective control of M. canis infection and the effect of KTZ on fungi.

The Water-Soluble Chitosan Derivative, N-Methylene Phosphonic Chitosan, Is an Effective Fungicide against the Phytopathogen Fusarium eumartii

  • Mesas, Florencia Anabel;Terrile, Maria Cecilia;Silveyra, Maria Ximena;Zuniga, Adriana;Rodriguez, Maria Susana;Casalongue, Claudia Anahi;Mendieta, Julieta Renee
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.533-542
    • /
    • 2021
  • Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. N-Methylene phosphonic chitosan (NMPC) is a water-soluble derivative prepared by adding a phosphonic group to chitosan. This study demonstrates that NMPC has a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii) judged by the inhibition of F. eumartti mycelial growth and spore germination. NMPC affected fungal membrane permeability, reactive oxygen species production, and cell death. Also, this chitosan-derivative exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens to exert fungicide action. In addition to water solubility, the selective biological cytotoxicity of NMPC adds value in its application as an antimicrobial agent in agriculture.

Methicillin resistant staphylococcus aureus에 대한 지유산의 항균활성 (Antibacterial Activity of JiYu-san Against Methicillin-resistant Staphylococcus aureus)

  • 황해;강옥화;권동렬
    • 생약학회지
    • /
    • 제53권2호
    • /
    • pp.87-95
    • /
    • 2022
  • Methicillin resistance Staphylococcus aureus (MRSA) is a gram-positive bacterium, the most commonly isolated bacterial human pathogen. JiYu-san is one of the natural products used to treat diseases in the folk recipe. In this study, we investigated the antimicrobial activity of EtOH 70% extracts of JiYu-san (JYS) against MRSA. The antibacterial activity of JYS against MRSA strain was evaluated using minimum inhibitory concentration (MIC), checkerboard dilution test, and time-kill assay. The effect of JYS on the immune mechanism of MRSA was confirmed through cell membrane permeability tests and energy metabolism tests, and the antibacterial activity mechanism was performed using qRT-PCR and western blot. As a result, in the antibacterial test of JYS, the MIC was measured to be 1.9~1000 ㎍/mL, and synergistic or showed a partial synergistic effect. In addition, JYS showed antibacterial activity in a combination test with DCCD or TX-100. In a study on the mechanism of action of antibacterial activity, it was found that JYS suppressed MRSA resistance genes and proteins. These results suggest that JYS has antibacterial activity and provides great potential as a natural antibiotic by modulating the immune mechanism against MRSA.

Skin-Mimicking Phantom for Measurment of Cosmetic Transdermal Absorption and Temperature Changes by Sonophoresis

  • Kim, Gahee;Jang, Hwijin;Choi, Seonmin;Park, Sanghyo;Kim, Woo Cheol;Key, Jaehong
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권4호
    • /
    • pp.271-279
    • /
    • 2022
  • Functional cosmetics containing various ingredients that improve skin health are currently being developed. In addition, technologies that help increase the absorption rate of such cosmetics have recently gained significant attention. Sonophoresis is a method to increase the transdermal absorption of cosmetics using ultrasound. A skin-mimicking phantom was fabricated using polydimethylsiloxane, Strat-MTM membrane, and thermochromic pigments. Gel-type cosmetics used in skin mask packs and epidermal-growth-factor-based nano-cosmetics were tested for their absorption rates at ultrasound frequencies of 1, 3, and 10 MHz in the single frequency mode, and 1/3 and 3/10 MHz in the dual frequency mode. The gel-type cosmetics and epidermal-grow-factor-based nano-cosmetics showed the highest absorption rate at 3/10MHz dual frequency. The size of the cosmetic particles decreased by 5-9 %. Furthermore, the temperature rise caused by ultrasound could be visually recognized by the thermochromic pigment in the phantom turning white. We presented a skin-mimicking phantom. The device can be customized according to the size of the ultrasound probe and has the advantage of quantitatively evaluating the transdermal permeability of cosmetics at a low cost. The development of the skin-mimicking phantom will be useful for determining the suitable conditions required to increase the absorption rate of cosmetics using ultrasound.

The Preventive Effect of 5-Iodo-6-Amino-1,2-Benzopyrone on Apoptosis of Rat Heart-derived Cells induced by Oxidative Stress

  • Kyoumg A Chung;Ji Seung Back;Jae Hyun Jang
    • 대한의생명과학회지
    • /
    • 제28권4호
    • /
    • pp.237-246
    • /
    • 2022
  • Ischemia-reperfusion results in excess reactive oxygen species (ROS) that affect myocardial cell damage. ROS production inhibition is effectively proposed in treating cardiovascular diseases including myocardial hypertrophy. Studies have shown that oxidizing cultured cells in in vitro experiments gradually decreases the permeability of mitochondrial membranes time- and concentration-dependent, resulting in increased mitochondrial membrane damage due to secondary ROS production and cardiolipin loss. However, recent studies have shown that 5-iodo-6-amino-1,2-benzopyrone (INH2BP), an anticancer and antiviral drug, inhibited peroxynitrite-induced cell damage in in vitro and alleviated partial or overall inflammation in animal experiments. Therefore, in this paper, we studied the preventive effect of INH2BP on H9c2 cells derived from mouse heart damaged by oxidative stress using 700 μM of hydrogen peroxide. As a result of oxidative stress to H9c2 cells by hydrogen peroxide whether the treatment of INH2BP or not, hydrogen peroxide caused serious damage in H9c2 cells. These results were confirmed with cell viability and Hoechst 33342 assays. And this damage was through cell death. However, it was confirmed that H9c2 cells pretreated with INH2BP significantly reduced cell death by hydrogen peroxide. In addition, measurements with DCF-DA assay to determine whether ROS is produced in H9c2 cells treated with only hydrogen peroxide produced ROS significantly, but H9c2 cells pretreated with INH2BP significantly reduced ROS production by hydrogen peroxide. Taken together, it is believed that INH2BP can be useful for the prevention and treatment of cardiovascular diseases induced through oxidative stress such as heart damage caused by ischemia/reperfusion.