Donepezil, Tacrine and $\alpha-Phenyl-n-tert-Butyl Nitrone$ (PBN) Inhibit Choline Transport by Conditionally Immortalized Rat Brain Capillary Endothelial Cell Lines (TR-BBB)

  • Kang Young-Sook (College of Pharmacy, Sookmyung Women's University) ;
  • Lee Kyeong-Eun (College of Pharmacy, Sookmyung Women's University) ;
  • Lee Na-Young (College of Pharmacy, Sookmyung Women's University) ;
  • Terasaki Tetsuya (Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University)
  • Published : 2005.04.01

Abstract

In the present study, we have characterized the choline transport system and examined the influence of various amine drugs on the choline transporter using a conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) in vitro. The cell-to-medium (C/M) ratio of $[^3{H}]choline$ in TR-BBB cells increased time-dependently. The initial uptake rate of $[^3{H}]choline$ was concentration-dependent with a Michaelis-Menten value, $K_{m}$, of $26.2\pm2.7{\mu}M$. The $[^3{H}]choline$ uptake into TR-BBB was $Na^{+}-independent$, but was membrane potential-dependent. The $[^3{H}]choline$ uptake was susceptible to inhibition by hemicholinium-3, and tetraethy-lammonium (TEA), which are organic cation transporter substrates. Also, the uptake of $[^3{H}]choline$ was competitively inhibited with $K_{i}$ values of $274 {\mu}M, 251 {\mu}M and 180 {\mu}M$ in the presence of donepezil hydrochloride, tacrine and $\alpha-phenyl-n-tert-butyl nitrone$ (PBN), respectively. These characteristics of choline transport are consistent with those of the organic cation transporter (OCT). OCT2 mRNA was expressed in TR-BBB cells, while the expression of OCT3 or choline transporter (CHT) was not detected. Accordingly, these results suggest that OCT2 is a candidate for choline transport at the BBB and may influence the BBB permeability of amine drugs.

Keywords

References

  1. Allen, D. D., Lockman, P. R., Roder, K. E., Dwoskin, L. P., and Crooks, P. A., Active transport of high-affinity choline and nicotine analogs into the central nervous system by the blood-brain barrier choline transporter. J. Pharm. Exp. Ther., 304, 1268-1274 (2003) https://doi.org/10.1124/jpet.102.045856
  2. Allen, D. D. and Smith, Q. R., Characterization of the bloodbrain barrier choline transporter using the in situ rat brain perfusion technique. J. Neurochem., 76, 1032-1041 (2001) https://doi.org/10.1046/j.1471-4159.2001.00093.x
  3. Cornford, E. M., Braun, L. D., and Oldendorf, W. H., Carrier mediated blood-brain barrier transport of choline and certain choline analogs. J. Neurochem., 30, 299-308 (1978) https://doi.org/10.1111/j.1471-4159.1978.tb06530.x
  4. Diamond, I., Choline metabolism in the central nervous system: the role of choline transport from plasma to brain. Neurology, 20, 382 (1970)
  5. Friedrich, A., George, R. L., Bridges, C. C., Prasad, P. D., and Ganapathy, V., Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4). Biochim. Biophys. Acta, 1512, 299-307 (2001) https://doi.org/10.1016/S0005-2736(01)00333-9
  6. Galea, E. and Estrada, C., Ouabain-sensitive choline transport system in capillaries isolated from bovine brain. J. Neurochem., 59, 936-941 (1992) https://doi.org/10.1111/j.1471-4159.1992.tb08333.x
  7. Gomez, C., Martin, C., Galea, E., and Estrada, C., Direct cytotoxicity of ethylcholine mustard aziridinium in cerebral microvascular endothelial cells. J. Neurochem., 60, 1534- 1539 (1993) https://doi.org/10.1111/j.1471-4159.1993.tb03318.x
  8. Gorboulev, V., Ulzheimer, J. C., Akhoundova, A., Ulzheimer, Teuber, I., Karbach, U., Quester, S., Baumann, C., Lang, F., Busch, A. E., and Koepsell, H., Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol., 16, 871-881 (1997) https://doi.org/10.1089/dna.1997.16.871
  9. Grundemann, D., Gorboulev, V., Gambaryan, S., Veyhl, M., and Koepsell, H., Drug excretion mediated by a new prototype of polyspecific transporter. Nature, 372, 549-552 (1994) https://doi.org/10.1038/372549a0
  10. Grundemann, D., Babin-Ebell, J., Martel, F., Ording, N., Schmidt, A., and Schomig, E., Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J. Biol. Chem., 272, 10408- 10413 (1997) https://doi.org/10.1074/jbc.272.16.10408
  11. Grundemann, D., Koster, S., Kiefer, N., Breidert, T., Engelhardt, M., Spitzenberger, F., Obermuller, N., and Schomig, E., Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J. Biol. Chem., 273, 30915-30920 (1998) https://doi.org/10.1074/jbc.273.47.30915
  12. Hartvig, P., Askmark, H., Aquilonius, S. M., Wiklund, L., and Lindstrom, B., Clinical pharmacokinetics of intravenous and oral 9-amino-1,2,3,4-tetrahydroacridine, tacrine. Eur. J. Clin. Pharmacol., 38, 259-263 (1990) https://doi.org/10.1007/BF00315027
  13. Hosoya, K., Takashima, T., Tetsuka, K., Nagura, T., Ohtsuki, S., Takanaga, H., Ueda, M., Yanai, N., Obinata, M., and Terasaki, T., mRNA expression and transport characterization of conditionally immortalized rat brain capillary endothelial cell lines; a new in vitro BBB model for drug targeting. J. Drug Target, 8, 357-370 (2000) https://doi.org/10.3109/10611860008997912
  14. Johansson, M., Hellstrom-Lindahl, E., and Nordberg, A., Steadystate pharmacokinetics of tacrine in long-term treatment of Alzheimer patients. Dementia, 7, 111-117 (1996)
  15. Kang, Y. S., Terasaki, T., Ohnishi, T., and Tsuji, A., In vivo and in vitro evidence for a common carrier mediated transport of choline and basic drugs through the blood-brain barrier. J. Pharmacobio-Dyn., 13, 353-360 (1990) https://doi.org/10.1248/bpb1978.13.353
  16. Kekuda, R., Pasad, P. D., Wu, X., Wang, H., Fei, Y. J., Leibach, F. H., and Gaapathy, V., Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J. Biol. Chem., 273, 15971-15979 (1998) https://doi.org/10.1074/jbc.273.26.15971
  17. Klein, J., Gonzalez, R. K., Koppen, A., and Loffelholz, K., Free choline and choline metabolites in rat brain and body fluids: Sensitive determination and implications for choline supply to the brain. Neurochem. Int., 22, 293-300 (1993) https://doi.org/10.1016/0197-0186(93)90058-D
  18. Knecht, K. T. and Mason, R. P., In vivo spin trapping of xenobiotic free radical metabolites. Arch. Biochem. Biophys., 303, 185-194 (1993) https://doi.org/10.1006/abbi.1993.1272
  19. Koepsell, H., Gorboulev, V., and Amdt, P., Molecular pharmacology of organic cation transporters in kidney. J. Membr. Biol., 167, 103-117 (1999) https://doi.org/10.1007/s002329900475
  20. MaNally, W. P., Pool, W. F., Sinz, M. W., Dehart, P., Ortwine, D. F., Huang, C. C., Chang, T., and Woolf, T. F., Distribution of tacrine and metabolites in rat brain and plasma after singleand multiple-dose regimens; Evidence for accumulation of tacrine in brain tissue. Drug Metab. Dispos., 24, 628-633 (1996)
  21. Matsui, K., Mishima, M., Nagai, Y., Yuzuriha, T., and Yoshimura, T., Absorption, distribution, metabolism, and excretion of donepezil (Aricept) after a single oral administration to rat. Drug Metab. Dispos., 27, 1406-1414 (1999)
  22. Metting, T. L., Burgio, D. E., Terry, A. V., Beach, J. W., Mccurdy, C. R., and Allen, D. D., Inhibition of brain choline uptake by isoarecolone and lobeline derivatives: implications for potential vector-mediated brain drug delivery. Neurosci. Lett., 258, 25-28 (1998) https://doi.org/10.1016/S0304-3940(98)00871-4
  23. Mori, S., Takanaga, H., Ohtsuki, S., Deguchi, T., Kang, Y. S., Hosoya, K., and Terasaki, T., Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J. Cereb. Blood Flow Metabol., 23, 432-440 (2003) https://doi.org/10.1097/01.WCB.0000050062.57184.75
  24. Okuda, T., Haga, T., Kanai, Y., Endou, H., Ishihara, T., and Katsura, I., Identification and characterization of the highaffinity choline transporter. Nat. Neurosci., 3, 120-125 (2000) https://doi.org/10.1038/72059
  25. Pardridge, W. M., Introduction to the blood-brain barrier: Methodology, biology and pathology, Cambridge University Press, Cambridge, pp. 1-486, (1998)
  26. Pardridge, W. M., Blood-brain barrier drug targeting: the future of brain drug development. Mol. Intervent., 3, 90-105 (2003) https://doi.org/10.1124/mi.3.2.90
  27. Pardridge, W. M., Holy grails and in vitro blood-brain barrier models. Drug Discov. Today, 9, 258 (2004) https://doi.org/10.1016/S1359-6446(03)03003-4
  28. Pardridge, W. M. and Oldendorf, W. H., Transport of metabolic substrates through the blood-brain barrier. J. Neurochem., 28, 5-12 (1977) https://doi.org/10.1111/j.1471-4159.1977.tb07702.x
  29. Parfitt, K. and Martindale, W., Martindale: the complete drug reference. 32nd ed. Pharmaceutical Press, London, pp. 1391- 1392 (1999)
  30. Rho, J. P. and Lipson, L. G., Focus on donepezil: A reversible acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Formulary, 32, 677-678 (1997)
  31. Saito, H., Masuda, S., and Inui, K., Cloning and functional characterization of a novel rat organic anion transporter mediating basolateral uptake of methotrexate in the kidney. J. Biol. Chem., 271, 20719-20725 (1996) https://doi.org/10.1074/jbc.271.34.20719
  32. Sawada, N., Takanaga, H., Matsuo, H., Naito, M., Tsuruo, T., and Sawada, Y., Choline uptake by mouse brain capillary endothelial cells in culture. J. Pharm. Pharmacol., 51, 847- 852 (1999) https://doi.org/10.1211/0022357991773050
  33. Sweet, D. H., Miller, D. S., and Pritchard, J. B., Ventricular choline transport. J. Biol. Chem., 276, 41611-41619 (2001) https://doi.org/10.1074/jbc.M108472200
  34. Tamai, I. and Tsuji, A., Transporter-mediated permeation of drugs across the blood-brain barrier. J. Pharm. Sci., 89, 1371-1388 (2000) https://doi.org/10.1002/1520-6017(200011)89:11<1371::AID-JPS1>3.0.CO;2-D
  35. Telting-Diaz, M. and Lunte, C. E., Distribution of tacrine across the blood-brain barrier in awake, freely moving rats using in vivo microdialysis sampling. Pharm. Res., 10, 44-48 (1993) https://doi.org/10.1023/A:1018964727833
  36. Terasaki, T., Ohtsuki, S., Hori, S., Takanaga, H., Nakashima, E., and Hosoya, K., New approaches to in vitro models of bloodbrain barrier drug transport. Drug Discov. Today, 20, 944-954 (2003) https://doi.org/10.1016/S1359-6446(03)02858-7
  37. Tiseo, P. J., Rogers, S. L., and Friedhoff, L. T., Pharmacokinetic and pharmacodynamic profile of donepezil HCl following evening administration. Br. J. Clin. Pharmacol., 46 Suppl 1, 13-18 (1998) https://doi.org/10.1046/j.1365-2125.1998.0460s1013.x
  38. Wu, X., Huang, W., Prasak, P. D., Seth, P., Rajan, D. P., Leibach, F. H., Chen, J., Conway, S. J., and Ganapathy, V., Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/ carnitine transporter. J. Pharm. Exp. Ther., 290, 1482-1492 (1999)
  39. Wu, X., Kekuda, R., Huang, W., Fei, Y. J., Leibach, F. H., Chen, J., Conway, S. J., and Ganapathy, V., Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J. Biol. Chem., 273, 32776-32786 (1998) https://doi.org/10.1074/jbc.273.49.32776
  40. Yamaoka, K., Tanigawara, Y., Nakagawa, T., and Uno, T., A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobio-Dyn., 4, 879-885 (1981) https://doi.org/10.1248/bpb1978.4.879
  41. Zhao, Q., Pahlmark, K., Smith, M. L., and Siesjo, B. K., Delayed treatment with the spin trap $\alpha$-phenyl-n-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol. Scand., 152, 349-350 (1994) https://doi.org/10.1111/j.1748-1716.1994.tb09816.x