• Title/Summary/Keyword: Membrane material

Search Result 1,079, Processing Time 0.031 seconds

High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide(AAO) Membrane

  • Kim, Yong-Hyun;Han, Young-Hwan;Lee, Hyung-Jik;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.191-195
    • /
    • 2008
  • Highly ordered silver nanowire with a diameter of 10 nm was arrayed by electroless deposition in a porous anodic aluminum oxide(AAO) membrane. The AAO membrane was fabricated electrochemically in an oxalic acid solution via a two-step anodization process, while growth of the silver nanowire was initiated by using electroless deposition at the long-range-ordered nanochannels of the AAO membrane followed by thermal reduction of a silver nitrate aqueous solution by increasing the temperature up to $350^{\circ}C$ for an hour. An additional electro-chemical procedure was applied after the two-step anodization to control the pore size and channel density of AAO, which enabled us to fabricate highly-ordered silver nanowire on a large scale. Electroless deposition of silver nitrate aqueous solution into the AAO membrane and thermal reduction of silver nanowires was performed by increasing the temperature up to $350^{\circ}C$ for 1 h. The morphologies of silver nanowires arrayed in the AAO membrane were investigated using SEM. The chemical composition and crystalline structure were confirmed by XRD and EDX. The electroless-deposited silver nanowires in AAO revealed a well-crystallized self-ordered array with a width of 10 nm.

Case Study on Sound Absorption Rate Measurement Method of PTFE Membrane Material (테프론(PTFE) 막재료의 흡음율 측정방법에 대한 연구)

  • Park, Hye-Na;Kim, Jung-Joong;Shon, Jang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.645-648
    • /
    • 2005
  • The grounds of multipurpose practical use degree are built much holding world cup 2002 but material that is used in this building most external membrane ceiling is accomplishing PTEE A master and servant. Therefore, this research analyzed assessment about sound absorption special quality that measure ventilation quantitys of 10 act material and analyze correlation with Air Permeability and the sound absorption rate, and follow in change of layer of air of inside facts material. Result is as following. When Air Permeability good dimension is 5$\sim$15 cc/cm$^2$/sec and acoustic absorptivity is the best as Air Permeability result that measure acoustic absorptivity of inside facts material particularly firstly, could know 8$\sim$9 cc/cm$^2$/sec love. When establish sound absorption inside facts in external membrane as result that measure acoustic absorptivity of inside (acts material secondly, could know that acoustic absorptivity is good though become about minimum back layer of air 900mm.

  • PDF

Preparation and Characterization of Kalsilite ($KAISiO_4$) as a Novel Inorganic Membrane Material (새로운 무기분리막 재료로서의 Kalsilite ($KAISiO_4$) 제조와 물성)

  • Lee, Yong-Taek;Ahn, Hyo-Seong
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.103-107
    • /
    • 2008
  • Membrane process has been focused as an alternative separation process because not only it exhibits a high selectivity compared with a traditional distillation process, but also it is known to be an energy saving separation process. Inorganic membrane, especially zeolite membrane, has been studied since it can be operated in severe conditions compared to the organic membranes. Recently, new zeolite materials are tested as an inorganic membrane material to overcome disadvantages of existing zeolite membranes. Kalsilite can be used as an inorganic membrane material for gas separation and selective water separation from water/organic mixtures because it is expected to be hydrophilic resulted from Si/Al ratio of 1 like zeolite 4A and has a narrow pore size of 0.36 nm. In this study, kalsilite was synthesized by a new economical hydrothermal process using Si : Al : K : $H_2O$ mole ratio of 1 : 1 : 8 : 60. The synthesized kalsilite powder was confirmed by XRD and has a mean diameter of $2.73{\mu}m$. The vapor adsorption test showed the synthesized kalsilite is hydrophilic.

Study on Simultaneous Material Transport through Charged Mosaic Membrane

  • Myeongkwan Song;Lee, Jang-Oo;Akira Yamauchi;Wongkang Yang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.109-112
    • /
    • 2004
  • The charged mosaic membranes having cation and anion exchange mixed groups within membrane were researched. The composite charged mosaic membrane was investigated from simultaneous transport such as solute and solvent flux. On the other hand, the reflection coefficient and salt flux coefficient were estimated by taking account of the cross constants of the phenomenological equation.(omitted)

  • PDF

The Effect of Ion Exchange Membrane on the Electrical Conduction in Metal Fuel Cell (금속연료전지에서 이온교환막이 전기전도에 미치는 영향)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2235-2239
    • /
    • 2010
  • In this study, The cation exchange membrane and the anion exchange membrane affect in electrical conduction of metal fuel cell was investigated. Magnesium material as anode electrode and the NaCl solution dissolved with 5~15wt% as electrolyte were used for the metal fuel cell. It was found that magnesium slag where flows toward the air electrode was suppressed by using ion exchange membrane. The open circuit voltage variation during discharge has very flat pattern by using ion exchange membrane, but the case which is not the exchange membrane, the open circuit voltage increased according to time. When using the anion exchange membrane, the electric current was higher case of the cation exchange membrane, as a result of higher equivalent conductivity in anion Cl-. The cation exchange membrane was observed with the fact that the output power is excellent in compared with anion exchange membrane.

Composite Membrane Preparation for Low Pressure Using Salting-Out Method and Its Application to Nanofiltration Process (염석법에 의한 저압용 역삼투막 제조 및 NF로의 적용)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.440-446
    • /
    • 2015
  • Nanofiltration composite membranes were prepared through the ion exchange polymers coating onto the porous microfiltration polyethylene (PE) membrane surfaces the salting-out and phase separated and pressurization (PSP) methods. The existence of coating on the surfaces was confirmed by the scanning electronic microscopy. The resulting membranes were characterized under the various conditions, such as the coating material, coating time, ionic strength etc., in terms of flux and rejection for NaCl 100 ppm solution. Under the same coating conditions of 10,000 ppm coating solution concentration and 3 atm coating pressure for both the coating materials of PEI and PSSA_MA, the flux 91.2 LMH and rejection 64.6% were obtained for PEI whereas 122.7 LMH and 38.1% were observed for PSSA_MA. From this study, it may be concluded that the composite membrane preparation is possible.

Synthesis and Characterization of Soluble Polyimide as Membrane material

  • 전종영;현진호;탁태문
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.56-57
    • /
    • 1994
  • Polyimides are one of the most important classes of highperformance polymers. Due to their excellent electriccal, thermal, and high-temperature mechanical properties. The polyimide and its derivatives have found many applications. But their uses are limited by their poor solubilities. In fact, most polyimides were processed in the form of their precursors, polyamic acid, which were subsequently converted to the imide structure.

  • PDF

Multicomponent Nanostructured Materials for Separation Membranes

  • Peinemann, Klaus-Viktor
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.11-11
    • /
    • 2004
  • Under the coordination of GKSS a new European project in the field of membrane development started recently. This project focuses on the development of novel nanostructured materials for selective material transport and separation. Two classes of materials will be developed in this project: nanostructured organic/inorganic hybrid materials and functional self-organized supramolecular copolymers.(omitted)

  • PDF

Development of Anion Exchange Membrane based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) for Alkaline Fuel Cell Application (화학적 가교를 이용한 Poly(2,6-dimethyl-1,4-phenylene oxde)계 음이온 교환막의 제조 및 알칼리 연료전지용 특성평가)

  • Sung, Seounghwa;Lee, Boryeon;Choi, Ook;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.173-182
    • /
    • 2019
  • Much research has been made for finding new and eco-friendly alternative sources of energy to solve the problems related with the pollution caused by emissions of greenhouse gases such as carbon dioxide as the use of fossil fuels increases worldwide. Among them, fuel cells draws particular interests as an eco-friendly energy generator because only water is obtained as a by-product. Anion exchange membrane-based alkaline fuel cell (AEMFC) that uses anion exchange membrane as an electrolyte is of increased interest recently because of its advantages in using low-cost metal catalyst unlike the PEMFC (potton exchange membrane fuel cell) due to the high-catalyst activity in alkaline conditions. The main properties required as an anion exchange membrane are high hydroxide conductivity and chemical stability at high pH. Recently we reported a chemically crosslinked poly(2-dimethyl-1,4-phenylene oxide) (PPO) by reacting PPO with N,N,N',N'-tetramethyl-1,6-hexanediamine as novel anion exchange membranes. In the current work, we further developed the same crosslinked polymer but having enhanced physicochemical properties, including higher conductivity, increased mechanical and dimensional stabilities by using the PPO with a higher molecular weight and also by increasing the crosslinking density. The obtained polymer membrane also showed a good cell performance.