• Title/Summary/Keyword: Membrane conductance

Search Result 75, Processing Time 0.032 seconds

Identification of Chloride Channels in Hamster Eggs (햄스터 난자에서 존재하는 Chloride 통로)

  • Kim, Y.-M.;Kim, J.-S.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.101-112
    • /
    • 2004
  • Chloride($Cl^-$) channels play critical roles in cell homeostasis and its specific functions such as volume regulation, differentiation, secretion, and membrane stabilization. The presence of these channels have been reported in all kinds of cells and even in frog oocytes. These essential role of $Cl^-$­ channels in cell homeostasis possibly play any role in egg homeostasis and in the early stage of development, however, there has been no report about the presence of $Cl^-$­ channel in the mammalian oocyte. This study was performed to elucidate the presence of $Cl^-$­ channels in hamster eggs. When allowing only $Cl^-$­ to pass through the channel of the egg membrane by using impermeant cation such as N-methyl-D-glucamine(NMDG), single channel currents were recorded. These channel currents showed typical long-lasted openings interrupted by rapid flickering. Mean open $time({\tau}o)$ was 43${\pm}$10.14 ms(n=9, at 50 mV). The open probability(Po) was decrease with depolarization. The current-voltage relation showed outward rectification. Outward slop conductance(32${\pm}$5.4 pS, n=22) was steeper than the inward slop conductance(10${\pm}$1.3 pS). Under the condition of symmetrical 140 mM NaCl, single channel currents were reversed at 0 mV(n=4). This reversal potential(Erev) was shifted from 0 mV at 140 mM concentration of internal NaCl(140 mM [Na+]i) to ­9.8${\pm}$0.5 mV(n=4) at 70 mM [Na+]i and 11.5${\pm}$1.9 mV at 280 mM [Na+]i(n=4) respectively, strongly suggesting that these are single $Cl^-$­ channel currents. To examine further whether this channel has pharmacological property of the $Cl^-$­ channel, specific Cl­ channel blockers, IAA-94(Indanyloxyacetic acid-94) and DIDS(4, 4'-diisothiocyan ostillben- 2-2'disulfonic acid) were applied. IAA-94 inhibited the channel current in a dose-dependent manner and revealed a rapid and flickering block. From these electrophysiological and pharmacological resluts, we found the novel $Cl^-$­ channel present in the hamster oocyte membrane. The first identification of $Cl^-$­ channel in the hamster oocyte may give a clue for the further study on the function of $Cl^-$­ channel in the fertilization and cell differentiation.

Enhanced Resistance of Transgenic Sweetpotato (Ipomoea batatas Lam.) Plants to Multiple Environmental Stresses Treated with Combination of Water Stress, High Light and High Temperature Stresses

  • Song, Sun-Wha;Kwak, Sang-Soo;Lim, Soon;Kwon, Suk-Yoon;Lee, Haeng-Soon;Park, Yong-Mok
    • Journal of Ecology and Environment
    • /
    • v.29 no.5
    • /
    • pp.479-484
    • /
    • 2006
  • Ecophysiological parameters of non-transgenic sweetpotato (NT) and transgenic sweetpotato (SSA) plants were compared to evaluate their resistance to multiple environmental stresses. Stomatal conductance and transpiration rate in NT plants decreased markedly from Day 6 after water was withheld, whereas those values in SSA plants showed relatively higher level during this period. Osmotic potential in SSA plants was reduced more negatively as leaf water potential decreased from Day 8 after dehydration treatment, while such reduction was not shown in NT plants under water stressed condition. SSA plants showed less membrane damage than in NT plants. As water stress and high light stress, were synchronously applied to NT and SSA plants maximal photochemical efficiency of PS II ($F_v/F_m$) in NT plants markedly decreased, while that in SSA plants was maintained relatively higher level. This trend of changes in $F_v/F_m$ between SSA plants and NT plants was more conspicuous as simultaneously treated with water stress, high light and high temperature stress. These results indicate that SSA plants are more resistive than NT plants to multiple environmental stresses and the enhanced resistive characteristics in SSA plants are based on osmotic adjustment under water stress condition and tolerance of membrane.

Identification of ATP-sensitive $K^+$ Conductances in Male Rat Major Pelvic Ganglion Neurons

  • Park, Kyu-Sang;Cha, Seung-Kyu;Lee, Keon-Il;Jun, Jae-Yeoul;Jeong, Seong-Woo;Kong, In-Deok;Lee, Joong-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.5
    • /
    • pp.247-253
    • /
    • 2002
  • Major pelvic ganglia (MPG) neurons are classified into sympathetic and parasympathetic neurons according to the electrophysiological properties; membrane capacitance (Cm), expression of T-type $Ca^{2+}$ channels, and the firing patterns during depolarization. In the present study, function and molecular expression of ATP-sensitive $K^+\;(K_{ATP})$ channels was investigated in MPG neurons of male rats. Only in parasympathetic MPG neurons showing phasic firing patterns, hyperpolarizing changes were elicited by the application of diazoxide, an activator of $K_{ATP}$ channels. Glibenclamide $(10{\mu}M),$ a $K_{ATP}$ channel blocker, completely abolished the diazoxide-induced hyperpolarization. Diazoxide increased inward currents at high $K^+$ (90 mM) external solution, which was also blocked by glibenclamide. The metabolic inhibition by the treatment with mitochondrial respiratory chain inhibitors (rotenone and antimycin) hyperpolarized the resting membrane potential of parasympathetic neurons, which was not observed in sympathetic neurons. The hyperpolarizing response to metabolic inhibition was partially blocked by glibenclamide. RT-PCR analysis revealed that MPG neurons mainly expressed the $K_{ATP}$ channel subunits of Kir6.2 and SUR1. Our results suggest that MPG neurons have $K_{ATP}$ channels, mainly formed by Kir6.2 and SUR1, with phenotype-specificity, and that the conductance through this channel in parasympathetic neurons may contribute to the changes in excitability during hypoxia and/or metabolic inhibition.

Fabrication of $V_2O_5$ Nanowire/PVA (Polyvinyl Alcohol) Composites for the Electric Applications (전기적 응용을 위한 바나듐옥사이드 나노선/폴리비닐 알코올 복합체 제작)

  • Lee, Jae-Woo;Lee, Kang-Ho;Kim, Gyu-Tae
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.216-219
    • /
    • 2009
  • $V_2O_5$ nanowire / polyvinyl alcohol (PVA) polymer composite fibers were fabricated by a new simple method. The reaction of PVA and acetone facilitates the formation of the polymer membrane which can be used to make the fiber. Composite fiber is percolative in the conductance because of the low percolation threshold in $V_2O_5$ nanowire networks. The fiber composite can be applied to the electromagnetic shielding originating from the conductive nature.

  • PDF

Calcium-activated Ionic Currents in Smooth Muscle Cells from Rabbit Superior Mesenteric Artery

  • Lee, Moo-Yeol;Bang, Hyo-Weon;Uhm, Dae-Yong;Rhee, Sang-Don
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.151-157
    • /
    • 1994
  • Intracellular free $Ca^{2+}$ contributes to regulation of various events occurring in vascular smooth muscle cells. One of these events is modulating the membrane iou currents. Single smooth muscle cells were isolated from rabbit mesenteric artery. Three kinds of $Ca^{2+}-activated\;current$ were studied with the patch clamp method. $Ca^{2+}-activated\;K^+\;current$ with a large oscillation was recorded in the depolarized potential range. The single channel conductance of this current was about 250 pS. It was abolished by replacing intracellular $K^+\;with\;Cs^+$. A $Ca^{2+}-activated$ nonselective cation current was observed in both the depolarized and hyperpolarized potential ranges. And it was blocked by replacement of extracellular $Na^+$ with N-methylglucamine (NMG) or extracellular application of $Cd^{2+}$. $Ca^{2+}-activated\;Cl^-\;current$ was revealed in the whole voltage range and was blocked by niflumic acid. These results indicate that at least three kinds of $Ca^{2+}-activated$ ionic currents exist in smooth muscle cells from rabbit superior mesenteric artery.

  • PDF

The role of ginseng total saponin in transient receptor potential melastatin type 7 channels

  • Kim, Byung Joo
    • Animal cells and systems
    • /
    • v.16 no.5
    • /
    • pp.376-384
    • /
    • 2012
  • Although ginsenosides have a variety of physiologic or pharmacologic functions in various regions, there are only a few reports on the effects of transient receptor potential melastatin 7 (TRPM7) channels. Here, we showed evidence suggesting that TRPM7 channels play an important role in ginseng total saponin (GTS)-mediated cellular injury. The combination techniques of electrophysiology, pharmacological analysis, small interfering RNA (siRNA) method and cell death assays were used. GTS depolarized the resting membrane potentials and decreased the amplitude of pacemaker potentials in cultured interstitial cells of Cajal (ICCs) in gastrointestinal (GI) tract. The TRPM7-like currents in single ICCs and the overexpressing TRPM7 in HEK293 cells were inhibited by GTS. However, GTS had no effect on $Ca^{2+}$-activated $Cl^-$ conductance. GTS inhibited the survival of human gastric (AGS) and brea (MCF-7) adenocarcinoma cells. Also, GTS inhibited the TRPM7-like currents in AGS and MCF-7 cells. The GTS-mediated cytotoxicity was inhibited by TRPM7-specific siRNA. In addition, we showed that overexpression of TRPM7 channels in HEK293 cells was inhibited by GTS. Thus, TRPM7 channels are involved in GTS-mediated cell death in AGS and MCF-7 cells, and these channels may represent a novel target for physiological disorders where GTS plays an important role.

Development of the Low Cost Assembled Separator (저가형 조립 분리판의 개발)

  • Hwang, Yong-Sheen;Lee, Ju-Hyung;Ji, Sang-Hun;Park, Jun-Ho;Lee, Dae-Young;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.247-250
    • /
    • 2009
  • This study considers the feasibility of using the low cost assembled separator. The graphite plate has been widely used as the separator in the field of PEMFCs(Polymer electrolyte membrane fuel cell) industry because of its excellent material properties such as good corrosion resistance, good electrical conductance and so on. However, there are some problems for the commercialization due to its poor cost effectiveness for the large volume manufacturing and lack of mechanical strength. From this respect, this study has focused on the manufacturing technology in order to reduce the price for the commercialization of separator. This study also shows that the assembled separator of the suggested structure, which is composed of grafoil and PC(PolyCarbonate) materials, could be manufactured at low cost enough for the mass production. The flow fields produced by cutting foils and the base plates of the separators were simply made by mechanical work.

  • PDF

Biologically-Inspired Selective and Sensitive Trinitrotoluene Sensors Using Conjugated Lipid-like Polymer Nanocoatings for CNT-FET Sensors

  • Jaworski, Justyn;Kim, Tae-Hyun;Yokoyama, Keisuke;Chung, Woo-Jae;Wang, Eddie;Lee, Byung-Yang;Hong, Seung-Hun;Majumdar, Arun;Lee, Seung-Wuk;Kwon, Ki-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.495-495
    • /
    • 2011
  • Miniaturized sensors capable of both sensitive and selective real-time monitoring of target analytes are tremendously valuable for various applications ranging from hazard detection to medical diagnostics. The wide-spread use of such sensors is currently limited due to insufficient selectivity for target molecules. We developed selective nanocoatings by combining trinitrotoluene (TNT) receptors bound to conjugated polydiacetylene (PDA) with single-walled carbon nanotube-field effect transistors (SWNT-FET). Selective binding events between TNT molecules and phage display derived TNT receptors were effectively transduced to sensitive SWNT-FET conductance sensors through the PDA coating. The resulting sensors exhibited unprecedented 1 fM sensitivity toward TNT in real time, with excellent selectivity over various similar aromatic compounds. Our biomimetic receptor coating approach may be useful for the development of sensitive and selective micro and nanoelectronic sensor devices for various other target analytes.

  • PDF

Functional significance of rSK2 N-terminal region revealed by electrophysiology and Preliminary Structural Studies

  • Narae Shin;Kang, Gil-boo;Eom, Soo-Hyun;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.41-41
    • /
    • 2003
  • Small conductance calcium-activated potassium channels (or SKCa channels) are potassium selective, voltage-independent, and activated by intracellular calcium concentration. These channels play important roles in excitable cells such as neuron in the central nervous system (Vergara et al., 1998). The activity of SKCa channels underlies the slow afterhyperpolarization that inhibits neuronal cell firing (Hille, 1991; Vergara et al.,1998). Until now, N-terminal region of rSK2 isn't characterized. To study the role of N-terminus, we constructed the N-terminal deletion mutant and characterized by electrophysiological means. Interestingly, N-terminal deletion mutant be trafficked to membrane couldn't evoke any ionic currents. Thus, N-terminal region has a role in functional rSK2 channel formation. To elucidate the function of N-terminal region, (His)6-conjugated protein was purified and filtrated by affinity column chromatography. Surprisingly, N-terminal region was shown in tetramer size that was supported by cross-linking result. Thus, we predicted that N-terminal region might be involved in the tetramerization of rSK2.

  • PDF

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai;Panyim, Sakol
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.460-465
    • /
    • 2004
  • A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.