• 제목/요약/키워드: Membrane binding

검색결과 526건 처리시간 0.03초

부안산 참굴(Crassostrea gigas) 추출물로부터 피부 상재균에 대한 새로운 항균 펩타이드, cgCAFLP의 탐색 및 정제 (Screening and Purification of a Novel Antibacterial Peptide, cgCAFLP, Against Skin Pathogens from the Extract of the Pacific Oyster Crassostrea gigas from Buan in Korea)

  • 이지은;서정길
    • 한국수산과학회지
    • /
    • 제54권6호
    • /
    • pp.927-937
    • /
    • 2021
  • This study was performed to screen the antimicrobial activities of the extract from the Pacific oyster Crassostrea gigas against skin pathogens and to purify the relevant antibacterial peptide. The acidified extract showed potent antibacterial activities against gram-positive and gram-negative bacteria but showed no activity against Candida albicans and no significant cell toxicity. Among acne-causing pathogens, the acidified extract showed potent antibacterial activity only against Staphylococcus aureus, and its antibacterial activity was completely abolished by treatment with trypsin or chymotrypsin, and was inhibited by salt treatment. The acidified extract showed strong DNA-binding ability but did not show bacterial membrane permeabilizing ability. Based on antimicrobial activity screening and cytotoxic effects, a novel antibacterial peptide was purified from the acidified gill extract using solid-phase extraction, cation-exchange, and reversed-phase HPLC. The resulting peptide had a molecular weight of 4800.8 Da and showed partial sequence homology with the carbonic anhydrase 4 (CA4) protein in the hard-shelled mussel. Overall, we purified a novel antibacterial peptide, named cgCAFLP, which is related to carbonic anhydrase 4 (CA4) protein, against skin pathogens. Our results suggest that the Pacific oyster extract could be used as an additive to control some acne-related skin pathogens (S. aureus).

가열 유무에 따른 참담치(Mytilus coruscus) 추출물 내의 항균 펩타이드 변화 (Variation of Antimicrobial Peptide in the Extract of the Hard-shelled Mussel Mytilus coruscus Depending on Boiling)

  • 이지은;서정길
    • 한국수산과학회지
    • /
    • 제55권6호
    • /
    • pp.875-885
    • /
    • 2022
  • This study was performed to confirm the optimal extraction method for antimicrobial peptides from the Hard-shelled mussel. Extractions were performed with two processes including 1% HAc/boiling and 1% HAc/non-boiling methods and used extracts for the comparison of the antimicrobial activity, protease stability, action mechanism, AU-PAGE (acid-urea PAGE), and HPLC chromatograms. 1% HAc/boiling extract showed potent antibacterial activities both against Gram-positive and negative bacterium but 1% HAc/non-boiling extract showed antibacterial activity only against Gram-positive bacteria. Treatment of 1% HAc/boiling extract with proteases retained almost antibacterial activity against B. subtilis, but abolished significant antibacterial activity against E. coli D31. Only 1% HAc/boiling extract showed two discrete clearing antibacterial zones including slow migrating and rapid migrating zones. Both extracts showed strong DNA-binding ability but did not show bacterial membrane permeabilizing ability. In comparison of the chromatogram obtained from C18 or cation-exchange HPLC, the eluted peaks from 1% HAc/boiling extract showed high hydrophobic property or absorbance compared to 1% HAc/non-boiling extract, respectively. The concentration of the purified antimicrobial peptide was also higher in 1% HAc/boiling extract than in 1% HAc/non-boiling extract. Our results suggest that the effective extraction condition for antimicrobial peptides from marine invertebrate is boiling process in a weak acetic acid solution (1%).

Inhibition of Melanosome Transport by Inducing Exon Skipping in Melanophilin

  • Jin Young Kim;Seon-Young Han;Kiho Sung;Jeong Yeon Seo;Cheol Hwan Myung;Chan Song Jo;Jee Hoe Yoon;Ji Yun Park;Jae Sung Hwang
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.466-472
    • /
    • 2023
  • Exon skipping is an efficient technique to inhibit specific gene expression induced by a short-sequence peptide nucleic acid (PNA). To date, there has been no study on the effects of PNA on skin pigmentation. In melanocytes, the tripartite complex is responsible for the transport of mature melanosomes from the nucleus to the dendrites. The tripartite complex is composed of Rab27a, Mlph (Melanophilin), and Myosin Va. Defects in the protein Mlph, a melanosome transport-related protein, are known to cause hypopigmentation. Our study shows that Olipass peptide nucleic acid (OPNA), a cell membrane-permeable PNA, targets exon skipping in the Mlph SHD domain, which is involved in Rab27a binding. Our findings demonstrate that OPNA induced exon skipping in melan-a cells, resulting in shortened Mlph mRNA, reduced Mlph protein levels, and melanosome aggregation, as observed by microscopy. Therefore, OPNA inhibits the expression of Mlph by inducing exon skipping within the gene. These results suggest that OPNA, which targets Mlph, may be a potential new whitening agent to inhibit melanosome movement.

Sources, Components, Structure, Catalytic Mechanism and Applications: a Critical Review on Nicotinate Dehydrogenase

  • Zhi Chen;Xiangjing Xu;Xin Ju;Lishi Yan;Liangzhi Li;Lin Yang
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.707-714
    • /
    • 2023
  • Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative. The current review mainly focuses on the introduction of sources, components, structure, catalytic mechanism and applications of NDHase. Specifically, NDHase is known as nicotinic acid hydroxylase and the sources principally derived from phylum Proteobacteria. In addition, NDHase requires the participation of the electron respiratory chain system on the cell membrane. And the most important components of the electron respiratory chain are hydrogen carrier, which is mainly composed of iron-sulfur proteins (Fe-S), flavin dehydrogenase (FAD), molybdenum binding protein and cytochromes. Heterologous expression studies were hampered by the plasmid and host with high efficiency and currently only Pseudomonas entomophila L48 as well as Comamonas testosterone was successfully utilized for the expression of NDHase. Furthermore, it is speculated that the conjugate and inductive effects of the substituent group at position 3 of the substrate pyridine ring exerts a critical role in the hydroxylation reactions at position 6 concerning about the substrate molecular recognition mechanism. Finally, applications of NDHase are addressed in terms of pesticide industry and wastewater treatment. On conclusion, this critical review would not only deepen our understanding of the theory about NDHase, but also provides the guideline for future investigation of NDHase.

Application of data fusion modeling for the prediction of auxin response elements in Zea mays for food security purposes

  • Nesrine Sghaier;Rayda Ben Ayed;Ahmed Rebai
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.45.1-45.7
    • /
    • 2022
  • Food security will be affected by climate change worldwide, particularly in the developing world, where the most important food products originate from plants. Plants are often exposed to environmental stresses that may affect their growth, development, yield, and food quality. Auxin is a hormone that plays a critical role in improving plants' tolerance of environmental conditions. Auxin controls the expression of many stress-responsive genes in plants by interacting with specific cis-regulatory elements called auxin-responsive elements (AuxREs). In this work, we performed an in silico prediction of AuxREs in promoters of five auxin-responsive genes in Zea mays. We applied a data fusion approach based on the combined use of Dempster-Shafer evidence theory and fuzzy sets. Auxin has a direct impact on cell membrane proteins. The short-term auxin response may be represented by the regulation of transmembrane gene expression. The detection of an AuxRE in the promoter of prolyl oligopeptidase (POP) in Z. mays and the 3-fold overexpression of this gene under auxin treatment for 30 min indicated the role of POP in maize auxin response. POP is regulated by auxin to perform stress adaptation. In addition, the detection of two AuxRE TGTCTC motifs in the upstream sequence of the bx1 gene suggests that bx1 can be regulated by auxin. Auxin may also be involved in the regulation of dehydration-responsive element-binding and some members of the protein kinase superfamily.

거북손(Pollicipes mitella) 추출물의 항균 활성 및 항염증 활성 탐색 (Screening of Anti-microbial and Anti-inflammatory Activity of Common Stalked Barnacle Pollicipes mitella Extract)

  • 문호성;이인아;서정길
    • 한국수산과학회지
    • /
    • 제57권3호
    • /
    • pp.216-226
    • /
    • 2024
  • This study screened the antimicrobial and anti-inflammatory activities of three extracts [1% acetic acid (HAc), distilled water (D.W.), and ethanol] from the common stalked barnacle Pollicipes mitella. Among the extracts, the 1% HAc extract showed the strongest antibacterial activity against several bacteria, but exhibited no activity against Candida albicans. To improve the degree of separation of the 1% HAc extract, solid-phase extraction was performed using a C18 cartridge with three solvents (D.W., 60A, and 100A). The 1% HAc 60A eluate showed the strongest antibacterial activity and enzyme, salt, and temperature stability, with no hemolytic activity. In addition, strong DNA-binding ability but no bacterial membrane permeability was observed. These results indicate that the P. mitella 1% HAc 60A eluate may contain antibacterial organic compounds that target intracellular components but not bacterial membranes. In addition, the 1% HAc 60A eluate exhibited potent inhibitory activity to reduce the production of inflammatory mediators (nitric oxide and prostaglandin E2) and pro-inflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1β) with no cytotoxicity. Therefore, the P. mitella 1% HAc 60A eluate has anti-inflammatory activity. Collectively, our results suggest that the P. mitella 1% HAc 60A eluate can be used as a bioactive source with antibacterial and anti-inflammatory activities.

소의 뇌조직 Phospholipase C의 활성화에 미치는 G-단백질의 역할 (The Role of G protein in the Activation of Phospholipase C from Bovine Brain)

  • 김정희;이동진;변영주
    • Journal of Yeungnam Medical Science
    • /
    • 제9권2호
    • /
    • pp.288-301
    • /
    • 1992
  • 소의 중추신경계의 신경전달인자에 의한 세포막에서의 정보전달 과정에 관여하는 PLC 활성화에 G-단백질의 관여 여부를 관찰하기 위하여 소의 뇌조직의 PLC ${\beta}$, ${\gamma}$${\delta}$를 얻어 각 isozyme의 특성을 관찰하였다. 기질용액에 phosphatidyl choline(PC)을 첨가시 PLC 각 isozyme 마다 정도의 차이는 있으나 증가 양상을 보였으며 PLC ${\delta}$$100{\mu}M$ $Ca^{2+}$ 농도에서 높은 활성도 증가를 보였다. 세포막 소포체를 형성하기 위하여 $PIP_2$기질과 PC에 detergent로 cholate와 deoxycholate 농도에 따른 PLC 효과 관찰에서 cholate 농도 0.2%에서 1%까지 증가할 때 효소 활성도의 지속적인 상승이 관찰되었고, deoxycholate는 농도가 0.2%에서 높았다가 0.4%에서 낮아졌고 1%까지 증가함에 따라 PLC 효소 활성도는 약간 증가하였다. 기질액에 뇌추출액을 첨가하여 cholic acid 농도에 따른 PLC의 효과를 관찰한 결과 cholic acid 농도 0.2%에서 보다 1%에서 각 isozyme 모두에서 PLC활성도가 증가하였다. 소의 여러 장기에서 PLC isozyme의 분포정도를 방사면역측정방법으로 관찰하였을 때 뇌조직에 가장 많이 분포하고 있으며 특히 PLC ${\beta}$, ${\gamma}$가 많았고, PLC ${\delta}$는 부신에서 가장 많이 분포하였다. 다음으로 PLC ${\beta}$는 부신과 위, PLC${\gamma}$는 부신과 폐순이었다. PLC 효소가 활성화될 때 G-단백질의 관여 여부에 관하여 cholate 0.2%와 0.1%에서 G-단백질과 GTPrS 및 PLC의 결합정도의 관찰은 조직분쇄시료를 소의 뇌 및 부신조직을 이용하여 $^{35}S$-GTPrS 첨가시와 단세포군 항체를 이용한 경우 모두에서 1.49% 이하의 낮은 결합 정도를 관찰하였다. 그래서 정제된 PLC isozyme과 G-단백질 $Go{\alpha}$, $G{\beta}{\gamma}$, Gmix, $Gi{\alpha}$$Gt{\alpha}$ 각각에 대한 효과 관찰에 서 $Go{\alpha}$$G{\beta}{\gamma}$는 PLC ${\beta}$${\delta}$의 활성도를 증가시켰고, PLC ${\gamma}$는 별 영향이 없었으며 Gmix에서는 세효소 모두 증가시켰다. $Gi{\alpha}$는 PLC ${\beta}$${\gamma}$에서만 증가하였다. $Gt{\alpha}$는 PLC ${\beta}$${\gamma}$에서 억제하였고 PLC ${\delta}$에서는 증가 양상을 보였다. 그러므로 PLC 활성화에 G-단백질의 관여가 인지되며 PLC isozyme과 G-단백질의 종류에 따라 대개의 경우 증가하는 경향이나 일부는 억제 내지는 별 영향이 없는 것으로 나타났다.

  • PDF

수초화 슈반세포 autotypic 세포연접의 PDZ 도메인 보유 단백질 (PDZ Domain-containing Proteins at Autotypic Junctions in Myelinating Schwann Cells)

  • 한성존;박형빈;홍수민;이동현;최마로;조정목;엄상화;장원희;석대현
    • 생명과학회지
    • /
    • 제25권1호
    • /
    • pp.101-112
    • /
    • 2015
  • 자가밀착연접 단백질들은 세포, 특히 수초화된 신경교세포막의 층상구조 사이에 존재하는 밀착연접에 존재한다. 그들 중 일부는 다른 단백질의 C-말단의 PDZ 결합 모티프에 붙는 postsynaptic density-95/Disks large/Zonula occludens-1 (PDZ) 도메인을 가진다. PDZ domain은 박테리아, 식물, 세균, 후생동물, Drosophila에 존재하여 거대한 단백복합체를 형성할 수 있게 해준다. 이러한 단백복합체들은 세포 내 신호전달, 단백질 표적화, 그리고 세포막 극화 작용을 한다. ZO-1, ZO-2, AF-6, PATJ, MUPP1, PAR-3는 자가밀착연접에 존재한다고 확인되었다. PAR-3는 atypical protein kinase C와 PAR-6와 반응하여 세포의 극성 형성에 중요한 역할을 하는 3차원 단백질복합체를 형성하는데 이는 Caenorhabditis elegans와 Drosophila 종에서 척추동물에까지 보존되었다. MAGI2는 흥분성 시냅스에서 ${\alpha}$-amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA) 수용체와 반응한다. PATJ는 claudin-1과 함께 마디곁 루프에서 발견되는 반면, MUPP1은 claudin-5와 함께 축삭사이막과 Schmidt-Lanterman 절흔에서 찾을 수 있다. ZO-1, ZO-2 그리고 PAR-3의 경우에는 세 장소 모두에서 발견된다. PDZ 도메인을 보유한 단백질들의 서로 다른 분포는 자가밀착연접의 발생에 영향을 준다. 이 총설에서는 수초화된 슈반 세포의 자가밀착연접에 존재하는 PDZ 도메인을 가진 단백질들과 그들의 기능을 알아볼 것이다.

Effects of High Glucose Levels on the Protein Kinase C Signal Transduction Pathway in Primary Cultured Renal Proximal Tubule Cells

  • Han, Ho-Jae;Kang, Ju-Won;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • 제30권2호
    • /
    • pp.257-267
    • /
    • 1996
  • Diabetes mellitus is associated with a wide range of pathophysiologic changes in the kidney. This study was designed to examine the mechanisms by which glucose modulates the expression of polarized membrane transport functions in primary cultured rabbit renal proximal tubule cells. Results are as follows: The rate of 30 minute $Rb^{+}$ uptake was significantly higher($137.76{\pm}5.40%$) in primary renal tubular cell cultures treated with 20 mM glucose than that of 5 mM glucose. Not the level of mRNA for the ${\alpha}$ subunit of Na, K-ATPase but that of ${\beta}$ subunit was elevated in primary cultures treated with high glucose. The initial rate of methyl-${\alpha}$-D-glucopyranoside(${\alpha}$-MG) uptake was significantly lower($71.91{\pm}3.02%$) in monolayers treated with 20 mM glucose than that of 5 mM glucose. There was a tendency of an increase in phlorizin binding site in cells treated with 5 mM glucose. However, 3-O-methyl-D-glucose(3-O-MG) uptake was not affected by glucose concentration in culture media. TPA inhibited $Rb^{+}$ uptake by $63.61{\pm}1.94\;and\;45.80{\pm}1.36%$ and ${\alpha}$-MG uptake by $48.54{\pm}3.69\;and\;41.87{\pm}6.70%$ in the cells treated with 5 and 20 mM glucose, respectively. Also TPA inhibited mRNA expression of Na/glucose cotransporter in cells grown in 5mM glucose medium. cAMP significantly stimulated ${\alpha}$-MG uptake by $114.65{\pm}5.70%$ in cells treated with 5mM glucose, while it did not affect ${\alpha}$-MG uptake in cell treated with 20 mM glucose. However, cAMP inhibited $Rb^{+}$ uptake by $76.69{\pm}4.16\;and\;66.87{\pm}2.41%$ in cells treated with 5 and 20 mM glucose, respectively. In conclusion, the activity of the renal proximal tubular Na,K-ATPase is elevated in high glucose concentration. In contrast, the activity of the Na/glucose cotransport system is inhibited. High glucose may in part affect the activity of the Na,K-ATPase and the Na/glucose cotransport system by controlling the protein kinase C and/or A signal transduction pathway in primary cultured renal proximal tubule cells.

  • PDF

Lipopolysaccharide 유도된 Raw264.7 세포주에서 전사조절인자 NF-κB와 IRF-1의 공동작용에 의해 조절되는 PD-1 발현연구 (PD-1 Expression in LPS-Induced Raw264.7 Cells Is Regulated via Co-activation of Transcription Factor NF-κB and IRF-1)

  • 최은경;이수운;이수웅
    • 미생물학회지
    • /
    • 제49권4호
    • /
    • pp.301-308
    • /
    • 2013
  • Programmed Death-1 (PD-1)은 중요한 면역조절분자들 중 하나로 다양한 면역활성인자에 자극된 T 세포, B 세포, NKT 세포 및 대식세포에서 발현된다. Lipopolysaccaride (LPS)는 그람음성세균의 세포벽구성물질로 PD-1 발현을 유도하는 중요 면역원들 중 하나로 알려져 있다. 그러나 선천면역세포에서 PD-1 발현기전에 관한 연구는 미비한 실정이다. 본 연구에서는 LPS에 의해 자극된 Raw264.7 세포주를 대상으로 PD-1 발현 및 발현조전기전을 RT-PCR, Western Blot, 유세포분석기, ChIP assay 및 co-immunoprecipitation 방법으로 조사하였다. Raw264.7 세포주가 LPS로 자극되었을 때 PI3K 및 p38 신호전달경로를 경유하여 PD-1 발현이 크게 증가되었다. 또한 LPS 주사된 생쥐의 비장유래 대식세포에서도 PD-1 발현이 증가됨을 확인 하였다. PD-1 유전자의 프로모터 분석을 통해서 NF-${\kappa}B$ 및 IRF-1 결합부위가 PD-1 발현에 중요함을 알 수 있었다. 또한 PD-1 발현을 극대화하기 위하여 전사조절인자 NF-${\kappa}B$ 및 IRF-1의 공동활성이 필수적임을 확인하였다. 본 연구결과는 LPS 유도 생쥐패혈증모델에서 선천면역세포에 발현된 PD-1분자의 제어를 통한 질병 연구에 유용한 자료로 이용될 수 있을 것으로 사료된다.