• Title/Summary/Keyword: Membrane binding

Search Result 523, Processing Time 0.027 seconds

Electrostatic and Hydrophobic Nature of the Cytochrome c-Membrane Interaction

  • Kim, Ukchun;Kim, Kyunghoon;Sanghwa Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.45-45
    • /
    • 1999
  • Cytochrome c (cyt c) binds to acidic membranes at low ionic strength. Replacement of Lys-72 or Lys-87 by Glu reduced the binding affinity of cyt c toward large unilamellar vesicles (LUV) in liquid crystalline phase. The differences were smaller for LUV in gel phase. A fraction of bound cyt c was non-electrostatically associated.(omitted)

  • PDF

Structure-Activity Relationship Study on Cephalosporins with Mechanism-based Descriptors

  • Jun-Ho Choi;Hojing Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.631-635
    • /
    • 1993
  • The polarizability and the transition state energy of a cephalosporin are assumed to be theoretical indices of the permeability through the outer membrane and of reactivity of ${\beta}$ -lactam ring with penicillin binding proteins, respectively, in Gram-negative bacteria. They are computed by AM1 method and used as variables of quantitative structure-activity relationship study. The results justify quadratic dependence of the activity on the variables. The intersection of difference volumes between $\beta-lactamase$ stable cephalosporins and unstable ones manifests that the steric hindrance of 7-side chain is responsible for the ${\beta}$ -lactamase stability.

ATP Receptor/Channels: Their Contribution to Calcium Regulation and Modulation by Neurotransmitters

  • Nakazawa, Ken
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.11-12
    • /
    • 1997
  • A concept that extracellular ATP plays a role as a neurotransmitter is now widely accepted. ATP released from nerve terminals transmits both excitatory and inhibitory signals to postsynaptic neurons, muscle cells, and non-excitable cells. ATP-activated channels are effectors that convert the binding of ATP into the opening of ion channel pores in postsynaptic membrane.(omitted)

  • PDF

Phosphorylation, 14-3-3 protein and photoreceptor in blue light response of stomatal guard cells

  • Toshinori Kinoshita;Takashi Emi;Michio Doi;Shimazaki, Ken-ichiro
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.335-337
    • /
    • 2002
  • Blue light (BL) induces stomatal opening through activation of H$^{+}$ pump, which creates electrical gradient across the plasma membrane for $K^{+}$ uptake into guard cells. The pump is the plasma membrane H$^{+}$ -ATPase and is activated via phosphorylation of the C-terminus with concomitant binding of the 14-3-3 protein. The opening is initiated by the perception of BL through phototropin (phot), which are recently identified as BL receptors in stomatal guard cells. In this study, we provide the biochemical evidence for phots as BL receptors in stomatal guard cells. vfphot was phosphorylated reversibly by BL, and phosphorylation levels of vfphot increased earlier than those of the plasma membrane W-ATPase. BL-dependent phosphorylations of vfphot and H$^{+}$-ATPase showed similar fluence dependency. Staurosporin, an inhibitor of serine/threonine protein kinase, and diphenyleneiodonium chloride (DPI), an inhibitor of flavoprotein, inhibited BL-dependent phosphorylations of vfphot and H$^{+}$ -ATPase. These results indicate that vfphot acts as a BL-receptor mediating stomatal opening.l opening.

  • PDF

Change in the Conformation of $p47^{phox}$ by Sodium Dodecyl Sulfate, an Activator of the Leukocyte NADPH Oxidase

  • Park, Jeen-Woo;Park, Hee-Sae
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.227-232
    • /
    • 1998
  • The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the production of $O_2^-$ from oxygen using NADPH as an electron donor. Dormant in resting neutrophils, the enzyme acquires catalytic activity when the cells are exposed to appropriate stimuli. During activation, the cytosolic oxidase components $p47^{phox}$ and $p67^{phox}$ migrate to the plasma membrane, where they associate with cytochrome $b_{558}$, a membrane-bound flavohemoprotein, to assemble the active oxidase. The oxidase can be activated in a cell-free system; the activating agent usually employed is an anionic amphiphile such as sodium dodecyl sulfate (SDS). Because $p47^{phox}$ can translocate by itself during activation, the conformational change in $p47^{phox}$ may be responsible for the activation of NADPH oxidase. We show here that the treatment of $p47^{phox}$ with SDS leads to an increase in the reactivity of the sutbydryl group of cysteines toward N-ethylmaleimide, indicating that the conformational change occurs when $p47^{phox}$ is exposed to SDS. We propose that this change in conformation results in the appearance of a binding site through which $p47^{phox}$ interacts with cytochrome $b_{558}$during the activation process.

  • PDF

Efficient Biotinylation of Nitrocellulose Membrane for Immuno-Filtration Capture Assay

  • Choi, Ki-Bong;Ha, Youn-Chul;Youn, Hee-Ju;Choi, Jung-Do
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.308-314
    • /
    • 1997
  • We investigated biotinylation of nitrocellulose membrane for immuno-filtration capture assay. In order to enhance the efficiency of biotinylation, nitrocellulose membranes were pretreated with several chemicals for the purpose of suitable protein absorption through surface modification. As a signal generating enzyme, urease was used and the concentration of avidin was optimized for the efficient binding kinetics between urease-biotin in liquid phase and biotinylated membrane in solid phase. For effective biotinylation, bovine serum albumin-biotin complexes could be immobilized at a concentration of $370\;{\mu}g$/stick ($4.4\;cm^2$). Among tested chemicals, polylysine (0.25%) showed a significant effect in biotinylation. Polylysine is thought to enhance surface area by extending unbound residues into solution. Time of treatment over 30 min and higher molecular weight of polylysines (58,100 dalton) showed positive effect on the enhancement of biotinylation. The result from this study may be useful for developing a new biosensor and other biofunctional membranes for examining molecular recognition.

  • PDF

Antimicrobial Activity of the Scolopendrasin V Peptide Identified from the Centipede Scolopendra subspinipes mutilans

  • Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Ahn, Mi-Young;Yun, Eun-Young;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • In a previous study, we analyzed the transcriptome of Scolopendra subspinipes mutilans using next-generation sequencing technology and identified several antimicrobial peptide candidates. One of the peptides, scolopendrasin V, was selected based on the physicochemical properties of antimicrobial peptides using a bioinformatics strategy. In this study, we assessed the antimicrobial activities of scolopendrasin V using the radial diffusion assay and colony count assay. We also investigated the mode of action of scolopendrasin V using flow cytometry. We found that scolopendrasin V's mechanism of action involved binding to the surface of microorganisms via a specific interaction with lipopolysaccharides, lipoteichoic acid, and peptidoglycans, which are components of the bacterial membrane. These results provide a basis for developing peptide antibiotics.

Removal of Co++ Ion in the Hollow Fiber Ultrafiltration System using Anion Surfactant Micellar Enhancement (음이온 계면활성제 미셀형성을 이용한 중공사 한외여과막 시스템에서의 코발트(Co)이온 제거)

  • Yang, Hyun-Soo;Han, Kwang-Hee;Choi, Kwang-Soon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.109-117
    • /
    • 1996
  • Removal of metal ions on the ultrafiltration membrane with micellar-enhanced with anion surfactants is a recently developed technique which can remove heavy metals and small molecular weight ions from wastewater with simple separation process and without a phase change. Above a certain concentration, so called the critical micelle con binding cationic cobalt ions and anionic surfactants, were removed by ultrafiltration membrane. The transmembrane pressure difference had a relatively small effect on the rejection coefficient of metal ions on the ultrafiltration membrane whereas the level of anionic surfactant-to-metal ratio (S/M) had a substantial effect.

  • PDF

Molecular Dynamics Simulations of Hemolytic Peptide δ-Lysin Interacting with a POPC Lipid Bilayer

  • Lorello, Kim M.;Kreutzberger, Alex J.;King, Allison M.;Lee, Hee-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.783-792
    • /
    • 2014
  • The binding interaction between a hemolytic peptide ${\delta}$-lysin and a zwitterionic lipid bilayer POPC was investigated through a series of molecular dynamics (MD) simulations. ${\delta}$-Lysin is a 26-residue, amphipathic, ${\alpha}$-helical peptide toxin secreted by Staphylococcus aureus. Unlike typical antimicrobial peptides, ${\delta}$-lysin has no net charge and it is often found in aggregated forms in solution even at low concentration. Our study showed that only the monomer, not dimer, inserts into the bilayer interior. The monomer is preferentially attracted toward the membrane with its hydrophilic side facing the bilayer surface. However, peptide insertion requires the opposite orientation where the hydrophobic side of peptide points toward the membrane interior. Such orientation allows the charged residues, Lys and Asp, to have stable salt bridges with the lipid head-group while the hydrophobic residues are buried deeper in the hydrophobic lipid interior. Our simulations suggest that breaking these salt bridges is the key step for the monomer to be fully inserted into the center of lipid bilayer and, possibly, to translocate across the membrane.

Subcellular Distribution of Heavy Metals in Organs of Bivalve Modiolus Modiolus Living Along a Metal Contamination Gradient

  • Podgurskaya, Olga V.;Kavun, Victor Ya.
    • Ocean Science Journal
    • /
    • v.41 no.1
    • /
    • pp.43-51
    • /
    • 2006
  • Concentration and distribution of Fe, Zn, Cu, Cd, Mn, Pb, Ni among subcellular fractions (cellular membrane structures and cytosol) and Zn, Cu, Cd among cytoplasmic proteins in the kidney and digestive gland of mussel Modiolus modiolus living along a polymetallic concentration gradient were studied. It was found in the kidney of M. modiolus from contaminated sites that the Fe percent increased in the "membrane" fraction, whereas Zn, Pb, Ni and Mn percent increased in the cytosol compared to the kidney of the control mussel. Note kidney cytosol of M. modiolus from clean and contaminated sites sequestered major parts of Cu and Cd. In the digestive gland of M. modiolus from contaminated sites Fe, Zn, Cd, Mn, Ni percent increased in the "membrane" fraction, whereas Cu, Pb percent increased in the cytosol compared to digestive gland of control mussel. Gel-filtration chromatography shows kidney of M. modiolus contains increased metallothionein-like protein levels irrespective of ambient dissolved metal concentrations. It was shown that the metal detoxification system in the kidney and digestive gland of M. modiolus was efficient under extremely high ambient metal levels. However, under complex environmental contamination in the kidney of M. modiolus, the metal detoxification capacity of metallothionein-like proteins was damaged.