• Title/Summary/Keyword: Membrane Dynamics

Search Result 196, Processing Time 0.021 seconds

Complete Coverage Path Planning of Cleaning Robot

  • Liu, Jiang;Kim, Kab-Il;Son, Young-I.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.429-432
    • /
    • 2003
  • In this paper, a novel neural network approach is proposed for cleaning robot to complete coverage path planning with obstacle avoidance in stationary and dynamic environments. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation derived from Hodgkin and Huxley's membrane equation. There are only local lateral connections among neurons. The robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot location without any prior knowledge of the dynamic environment.

  • PDF

Topology of High Efficiency Power Conversion with Fuel Cell Generation System (고효율 전력변환장치를 사용한 연료전지 시스템의 토폴로지)

  • Mun, S.P.;Suh, K.Y.;Lee, H.W.;Kwon, S.K.;Nakaoko, M.;Shin, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.329-333
    • /
    • 2005
  • In this study paper, a 3[kW] Fuel Cell Generation (FCG)system with Fuel Cell(FC)simulator has been proposed. The developed FC simulator generates the actual voltage and current output characteristics of the Proton Exchange Membrane Fuel Cell (PEMFC), so that the overall performance and the dynamics of the proposed system could be effectively examined and tested. In this paper, at first, the system configuration and operational principle of the developed FC simulator has been investigated and the design process of the FCG system is explained in detail. In addition, the validity of the proposed system has been verified by the informative simulation and experimental results.

  • PDF

Effect of Nafion Chain Length on Proton Transport as a Binder Material (수소이온 전달 특성에 미치는 바인더로 활용 가능한 나피온의 주쇄 길이의 영향)

  • Kang, Hoseong;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.57-65
    • /
    • 2020
  • The purpose of this study was to compare the water channel morphology and the proton conductivity by changing the number of repeating units of the polymer backbone of PEMs, and to present a criterion for selecting an appropriate polymer model for MD simulation. In the model with the shortest polymer main chain, the movement of the main chain and the sulfonic acid group was observed to be large, but no change in the water channel morphology was found. In addition, due to the nature of the proton transport ability that is most affected by the water channel morphology, the proton conductivity did not show a significant correlation with the length of the polymer backbone. These results provide important information, particularly for the preparation of ionomers for binders. In general, a low molecular weight polymer electrolyte material is used for a binder ionomer. Since the movement of the main chain/sulfonic acid group is improved, it can play a role of enclosing the catalyst layer well. However, there is no change in its proton conducting performance. In conclusion, the preparation of ionomers for binders will require molecular weight and structure design with a focus on physical properties rather than proton transfer performance.

Numerical Study of Effects of Operating Conditions on the Performance of High Temperature PEMFC (작동 조건에 따른 고온 고분자 전해질 연료전지의 성능 변화에 대한 전산해석 연구)

  • Kim, Kyoung-Youn;Sohn, Young-Jun;Kim, Min-Jin;Yang, Tae-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.283-289
    • /
    • 2010
  • A two-dimensional isothermal model has been employed for numerical simulations of a high temperature hydrogen fuel cell with proton exchange membrane. The model is validated with existing experimental data and used for examination on the effects of various operating conditions on the fuel cell performance. The present numerical results show that the cell performance increases with increasing exchange current density, ion conductivity of the membrane, inlet gas flow rate as well as operating pressure. Also, higher porosity of gas diffusion layer (GDL) results in higher cell performance due to enhancement of the diffusion through the GDL, where the cathode GDL porosity more influences on the performance as compared with the anode one.

Numerical Analysis for the Effect of Spacer in Reverse Electrodialysis (역전기투석 장치 내 스페이서의 영향에 관한 수치해석적 연구)

  • Shin, Dong-Woo;Kim, Hong-Keun;Kim, Tae-Hwan;Park, Jong-Soo;Jeon, Dong Hyup
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In this study, the effects of spacer and variation of spacer height in reverse electrodialysis (RED) on the seawater and ion transport were investigated. A three-dimensional computational fluid dynamics (CFD) simulation for a hexagonal spacer was constructed. The results showed that the swirl in the channel and ion transport rate to the membrane were enhanced at higher Reynolds number, on the other hand, pressure difference between the inlet and outlet was increased. Moreover thicker spacer increased Power number and Sherwood number.

Simulation of Membrane Sloshing Tank by Using MPS (입자법을 이용한 멤브레인 타입 슬로싱 시뮬레이션)

  • Kim, Kyung Sung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.117-122
    • /
    • 2019
  • In the field of fluid dynamics, the sloshing effects are most common and significant problem. It is usually appeared in the tank filled with fluid which is on the main structure, thus, sloshing effects and its impact load may affect to entire system. For the sloshing effects analysis, impact loads due to tank motion is generally investigated theocratically, experimentally and numerically. The difficulty of sloshing phenomenon is non-linearity induced by large deformation at the free-surface. In this regard, it is well known issue that the repeatability on the sloshing problems is very low. In this study, moving particle semi-implicit method was employed to simulate sloshing problem and then the results were compared with corresponding experiments captured by high accuracy high speed camera. The results from numerical simulation was compared to experimental results.

Dynamics Transition of Electroconvective Instability Depending on Confinement Effect (공간 제약 효과에 따른 전기와류 불안정성의 동역학 전이)

  • Lee, Seungha;Hyun, Cheol Heon;Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.626-631
    • /
    • 2021
  • One of the nonlinear electrokinetic phenomena around ion exchange membrane is electroconvective instability which can be found in various electrokinetic applications such as electrodialysis, electrochemical battery, microfluidic analysis platform, etc. Such instability acts as a positive transport mechanism for the electrodialysis via amplifying mass transport rate. On the other hands, in the electrochemical battery and the microfluidic applications, the instability provokes unwanted mass transport. In this research, to control the electroconvective instability, the onset of the instability was analyzed as a function of confinement effect as well as applied voltage. As a result, we figured out that the dynamic behavior of electroconvective instability transited as a sequence of stable regime - static regime - chaotic regime depending on the applied voltage and confinement effect. Furthermore, stability curves about the dynamic transition were numerically determined as well. Conclusively, the confinement effect on electroconvective instability can be applied for effective means to control the electrokinetic chaos.

Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction (FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석)

  • YOO, BIN;LIM, KISUNG;JU, HYUNCHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.

Golgi Stress Response: New Insights into the Pathogenesis and Therapeutic Targets of Human Diseases

  • Won Kyu Kim;Wooseon Choi;Barsha Deshar;Shinwon Kang;Jiyoon Kim
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.191-199
    • /
    • 2023
  • The Golgi apparatus modifies and transports secretory and membrane proteins. In some instances, the production of secretory and membrane proteins exceeds the capacity of the Golgi apparatus, including vesicle trafficking and the post-translational modification of macromolecules. These proteins are not modified or delivered appropriately due to the insufficiency in the Golgi function. These conditions disturb Golgi homeostasis and induce a cellular condition known as Golgi stress, causing cells to activate the 'Golgi stress response,' which is a homeostatic process to increase the capacity of the Golgi based on cellular requirements. Since the Golgi functions are diverse, several response pathways involving TFE3, HSP47, CREB3, proteoglycan, mucin, MAPK/ETS, and PERK regulate the capacity of each Golgi function separately. Understanding the Golgi stress response is crucial for revealing the mechanisms underlying Golgi dynamics and its effect on human health because many signaling molecules are related to diseases, ranging from viral infections to fatal neurodegenerative diseases. Therefore, it is valuable to summarize and investigate the mechanisms underlying Golgi stress response in disease pathogenesis, as they may contribute to developing novel therapeutic strategies. In this review, we investigate the perturbations and stress signaling of the Golgi, as well as the therapeutic potentials of new strategies for treating Golgi stress-associated diseases.

Computational Analysis of the 3-D structure of Human GPR87 Protein: Implications for Structure-Based Drug Design

  • Rani, Mukta;Nischal, Anuradha;Sahoo, Ganesh Chandra;Khattri, Sanjay
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7473-7482
    • /
    • 2013
  • The G-protein coupled receptor 87 (GPR87) is a recently discovered orphan GPCR which means that the search of their endogenous ligands has been a novel challenge. GPR87 has been shown to be overexpressed in squamous cell carcinomas (SCCs) or adenocarcinomas in lungs and bladder. The 3D structure of GPR87 was here modeled using two templates (2VT4 and 2ZIY) by a threading method. Functional assignment of GPR87 by SVM revealed that along with transporter activity, various novel functions were predicted. The 3D structure was further validated by comparison with structural features of the templates through Verify-3D, ProSA and ERRAT for determining correct stereochemical parameters. The resulting model was evaluated by Ramachandran plot and good 3D structure compatibility was evidenced by DOPE score. Molecular dynamics simulation and solvation of protein were studied through explicit spherical boundaries with a harmonic restraint membrane water system. A DRY-motif (Asp-Arg-Tyr sequence) was found at the end of transmembrane helix3, where GPCR binds and thus activation of signals is transduced. In a search for better inhibitors of GPR87, in silico modification of some substrate ligands was carried out to form polar interactions with Arg115 and Lys296. Thus, this study provides early insights into the structure of a major drug target for SCCs.