• 제목/요약/키워드: Membership function.

검색결과 761건 처리시간 0.026초

소속함수와 Dempster-Shafer 증거합 법칙을 이용한 긴장도 평가 알고리즘 개발 (Development of Arousal Level Estimation Algorithm by Membership Function and Dempster-Shafer′s Rule of Combination in Evidence)

  • 정순철
    • 감성과학
    • /
    • 제5권1호
    • /
    • pp.17-24
    • /
    • 2002
  • 본 연구는 객관적인 생리신호로부터 인간의 감성을 추론할 수 있는 감성평가 전문가 시스템을 개발하기 위한 첫 번째 단계로 측정된 생리신호를 이용하여 인간의 긴장도를 판단하는 알고리즘의 개발을 목표로 한다. 감성평가와 관련된 애매함을 수리적으로 취급하기 위해 퍼지이론을 적용하여 임의의 감성영역에 속하는 정도를 소속함수로 정량화함으로써 감성평가를 가능하게 하고자 하였다. 소속함수의 결정은 상상을 통해 유발된 긴장/이완의 생리신호 데이터베이스 결과를 사용하였다. 그리고 두 가지 이상의 생리신호 측정결과와 각 생리신호의 소속함수로부터 하나의 최종결과(긴장도)를 유추하기 위해서 Dempster-Shafer증거합 법칙을 적용하였고, 이를 통해 최종적인 긴장도를 도출할 수 있도록 하였다.

  • PDF

퍼지회귀계수에 관한 퍼지검정 (Fuzzy Test for the Fuzzy Regression Coefficient)

  • 강만기;정지영;최규탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.29-33
    • /
    • 2001
  • We propose fuzzy least-squares regression analysis by few error term data and test the slop by fuzzy hypotheses membership function for fuzzy number data with agreement index. Finding the agreement index by area for fuzzy hypotheses membership function and membership function of confidence interval, we obtain the results to acceptance or reject for the test of fuzzy hypotheses.

  • PDF

A STUDY ON MODIFIED MEMBERSHIP FUNCTION BASED ON FREQUENCY VARIATION OF LPC

  • Choi, Seung-Ho;Kim, Hyoung-Guen
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.1092-1097
    • /
    • 1994
  • To solve the frequency variation of speech patterns which consist of LPC sequences, a new membership function made by the relation between order of LPC and spectrum is proposed in this paper. To reduce errors, fuzzy inference is executed using the proposed membership function. The computer simulation shows the effectiveness of the word recognition.

  • PDF

적응형 소속함수를 가지는 퍼지 제어기 (Fuzzy Controller with Adaptive Membership Function)

  • 김봉재;방근태;박현태;유상욱;이현우;정원용;이수흠
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.813-816
    • /
    • 1995
  • The shape and width of fuzzy membership function has an effect on performance of fuzzy controller. In this paper, neuro-fuzzy controller is proposed to improve the control performance of fuzzy controller. It has membership function, that is adapt to plant constant by using trained neural network. This neural network has been trained with back propagation algorithm. To show the effectiveness of proposed neuro-fuzzy controller with adaptive membership function, it is applied to plant (dead time + 1st order) with various plant constant.

  • PDF

하이브리드 신경망을 이용한 실내(室內) 쾌적감성(快適感性)모형 개발 (Development of Comfort Feeling Structure in Indoor Environments Using Hybrid Neuralnetworks)

  • 전용웅;조암
    • 대한인간공학회지
    • /
    • 제20권2호
    • /
    • pp.29-46
    • /
    • 2001
  • This study is about the modeling of comfort feeling structure in indoor environments. To represent the degree of practical comfort feeling level in an environment, we measured elements of human sense and resultant elements of comfort feeling such as coziness, refreshment, and freshness with physical values(temperature, illumination, noise. etc.). The relationships of elements of human sense and elements of comfort feeling were formulated as a fuzzy model. And a hybrid-neural network with three layers were designed where obtained from fuzzy membership function values of the elements of human sense were used as inputs, and given as fuzzy membership function values of resultant elements of comfort feeling were used as outputs. Both kinds of fuzzy membership function values were obtained from physical values. The network was trained by measured data set. The proposed hybrid-neural network were tested and proposed a more realistic model of comfort feeling structure in indoor environments.

  • PDF

Modified Gaussian Filter based on Fuzzy Membership Function for AWGN Removal in Digital Images

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제19권1호
    • /
    • pp.54-60
    • /
    • 2021
  • Various digital devices were supplied throughout the Fourth Industrial Revolution. Accordingly, the importance of data processing has increased. Data processing significantly affects equipment reliability. Thus, the importance of data processing has increased, and various studies have been conducted on this topic. This study proposes a modified Gaussian filter algorithm based on a fuzzy membership function. The proposed algorithm calculates the Gaussian filter weight considering the standard deviation of the filtering mask and computes an estimate according to the fuzzy membership function. The final output is calculated by adding or subtracting the Gaussian filter output and estimate. To evaluate the proposed algorithm, simulations were conducted using existing additive white Gaussian noise removal algorithms. The proposed algorithm was then analyzed by comparing the peak signal-to-noise ratio and differential image. The simulation results show that the proposed algorithm has superior noise reduction performance and improved performance compared to the existing method.

사상멤버쉽함수에 의한 화자적응 단어인식 (Speaker-adaptive Word Recognition Using Mapped Membership Function)

  • 이기영;최갑석
    • 한국음향학회지
    • /
    • 제11권3호
    • /
    • pp.40-52
    • /
    • 1992
  • 본논문에서는 불특정화자 음성인식의 문제점이 되는 개인차에 의한 변동을 흡수하기 위하여 사상멤버쉽함수에 의한 화자적응 단어인식 방법을 제안하였다. 이방법의 학습과정에서는 미지화자의 표준화자의 스펙트럼패턴 사이에서 작성된 사상코드북에 퍼지이론을 도입하여 사상멤버쉽함수를 작성하였으며, 인식과정에서는 미지화자의 음성패턴을 사상멤버쉽함수에 의해 표준화자의 음성패턴에 적응된 패턴으로 재구성하고 뉴럴-퍼지패턴매칭에 의해 단어를 인식하였다. 본 방법의 타당성을 평가하기 위하여, 28개의 DDD 지역명을 대상으로 실험한 결과, 종래의 사상코드북에 의한 벡터양자화 화자적응방법에서는 64.9[%], 퍼지벡터양자화 화자적응방법에서는 76.1[%]의 인식율을 얻었으나, 사상멤버쉽함수에 의한 화자적응방법에서는 95.4[%]의 향상된 인식율을 얻으므로써 인식성능의 우수함을 확인하였다. 또한 사상멤버쉽함수의 작성과정에서는 반복된 학습과정이 불피요하며, 기억용량과 계산량도 사상코드북에 의한 화자적응방법보다 각각 1/30, 1/500배 정도였다.

  • PDF

A Study on an Adaptive Membership Function for Fuzzy Inference System

  • Bang, Eun-Oh;Chae, Myong-Gi;Lee, Snag-Bae;Tack, Han-Ho;Kim, Il
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.532-538
    • /
    • 1998
  • In this paper, a new adaptive fuzzy inference method using neural network based fuzzy reasoning is proposed to make a fuzzy logic control system more adaptive and more effective. In most cases, the design of a fuzzy inference system rely on the method in which an expert or a skilled human operator would operate in that special domain. However, if he has not expert knowledge for any nonlinear environment, it is difficult to control in order to optimize. Thus, using the proposed adaptive structure for the fuzzy reasoning system can controled more adaptive and more effective in nonlinear environment for changing input membership functions and output membership functions. The proposed fuzzy inference algorithm is called adaptive neuro-fuzzy control(ANFC). ANFC can adapt a proper membership function for nonlinear plant, based upon a minimum number of rules and an initial approximate membership function. Nonlinear function approximation and rotary inverted pendulum control system ar employed to demonstrate the viability of the proposed ANFC.

  • PDF

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

A Fuzzy Traffic Controller Considering Spillback on Crossroads

  • Park, Wan-Kyoo;Lee, Sung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.1-5
    • /
    • 2001
  • In this paper, we propose a fuzzy traffic controller that is able to cope with traffic congestion appropriately. In order to consider such situation as loss of green time caused by spillback of upper crossroad, it imports a degree of traffic congestion of upper roads which vehicles on a crossroad are to proceed to. We constructed the equal-partitioned fuzzy traffic controller that uses the membership functions of the same size and shape, and modified the size and shape, and modified the size and shape of its membership functions by the membership function modification algorithm. In experiment, we compared and analyzed the fixed signal controller, the fuzzy traffic controller with the membership of the same size and shape, and the modified fuzzy traffic controller by using the delay time, the proportion of entered vehicles to occurred vehicles and the proportion of passed vehicles to entered vehicles. As a result of experiment, the modified fuzzy controller showed more enhanced performance than others.

  • PDF