• Title/Summary/Keyword: Member grouping

Search Result 18, Processing Time 0.027 seconds

Selection of Optimal Model for Structural System Identification (SI기법 적용을 위한 최적 모델의 선택)

  • Kwak, Hyun-Seok;Kwon, Soon-Jung;Lee, Hae-Sung;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.217-224
    • /
    • 2005
  • A methodology of selecting an optimal model is proposed for applying a frequency-domain SI method effectively. Instead of using a reduced finite element model, a reasonably detail finite element model is established first and then the model is identified. To satisfy the identifiability criterion, a parameter grouping scheme is applied to control the number of unknowns. Among the simulated member grouping cases, an optimal model is selected as the one with the minimal statistical error. The proposed approach has been examined through simulation studies on a single span box-girder bridge.

Development of RC member design modules for a integrated system (통합시스템 구축에 있어서 RC 부재설계 모듈 개발)

  • 이진우;김남희;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.165-172
    • /
    • 1998
  • The development of Reinforced Concrete member design modules is necessary for user to design structures easily. The purpose of this paper is to be available for a integrated system used structure design. This module is linked with central database for the benefit of minimizing time of design and user's efforts. In order to minimize memory space, all of data is stored in central database. Member design modules applied Object-Oriented concepts are possible to be reusible, flexible for member functions in classes. This modules can be operated both independent member design modules and a part of integrated system. Sooner or later, this modules will be related to member grouping modules by data.

  • PDF

Drift Design Method of High-rise Buildings Considering Design Variable Linking Strategy and Load Combinations (부재 그룹과 하중 조합을 고려한 고층건물 변위조절 설계법)

  • Seo, Ji-Hyun;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.357-367
    • /
    • 2006
  • Drift design methods using resizing algorithms have been presented as a practical drift design method since the resizing algorithms proposed easily find drift contribution of each member, called member displacement participation factor, to lateral drift to be designed without calculation of sensitivity coefficient or re-analysis. Weight of material to be redistributed for minimization of the lateral drift is determined according to the member displacement participation factors. However, resizing algorithms based on energy theorem must consider loading conditions because they have different displacement contribution according to different loading conditions. Furthermore, to improve practicality of resizing algorithms, structural member grouping is required in application of resizing algorithms to drift control of high-rise buildings. In this study, three resizing algorithms on considering load condition and structural member grouping are developed and applied to drift design of a 20-story steel-frame shear-wall structure and a 50-story frame shear-wall system with outriggers.

Development of Integrated Design System for Space Frame Structures (스페이스프레임 구조물의 통합설계시스템 개발)

  • Lee, Ju-Young;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.59-66
    • /
    • 2001
  • This paper describes three modules for development of the Space Frame Integrated Design System(SFIDS). The Control Module is implemented to control the developed system. The Model Generation Module based on PATRAN user interface enables users to generate a complicated finite element model for space frame structures. The Optimum Design Module base on a branch of combinatorial optimization techniques which can realize the optimization of a structure having a large number of members designs optimum members of a space frame after evaluating analysis results. The Control Module and the Model Generation Module Is implemented by PATRAN Command Language(PCL) while C++ language is used in the Optimum Design Module. The core of the system is PATRAN database, in which the Model Generation Module creates information of a finite element model. Then, PATRAN creates Input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

Evaluation of the Effects of a Grouping Algorithm on IEEE 802.15.4 Networks with Hidden Nodes

  • Um, Jin-Yeong;Ahn, Jong-Suk;Lee, Kang-Woo
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.81-91
    • /
    • 2014
  • This paper proposes hidden-node aware grouping (HAG) algorithm to enhance the performance of institute of electrical and electronics engineers (IEEE) 802.15.4 networks when they undergo either severe collisions or frequent interferences by hidden nodes. According to the degree of measured collisions and interferences, HAG algorithm dynamically transforms IEEE 802.15.4 protocol between a contention algorithm and a contention-limited one. As a way to reduce the degree of contentions, it organizes nodes into some number of groups and assigns each group an exclusive per-group time slot during which only its member nodes compete to grab the channel. To eliminate harmful disruptions by hidden nodes, especially, it identifies hidden nodes by analyzing the received signal powers that each node reports and then places them into distinct groups. For load balancing, finally it flexibly adapts each per-group time according to the periodic average collision rate of each group. This paper also extends a conventional Markov chain model of IEEE 802.15.4 by including the deferment technique and a traffic source to more accurately evaluate the throughput of HAG algorithm under both saturated and unsaturated environments. This mathematical model and corresponding simulations predict with 6%discrepancy that HAG algorithm can improve the performance of the legacy IEEE 802.15.4 protocol, for example, even by 95% in a network that contains two hidden nodes, resulting in creation of three groups.

Brain Wave Characteristic Analysis by Multi-stimuli with EEG Channel Grouping based on Binary Harmony Search (Binary Harmony Search 기반의 EEG 채널 그룹화를 이용한 다중 자극에 반응하는 뇌파 신호의 특성 연구)

  • Lee, Tae-Ju;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.725-730
    • /
    • 2013
  • This paper proposed a novel method for an analysis feature of an Electroencephalogram (EEG) at all channels simultaneously. In a BCI (Brain-Computer Interface) system, EEGs are used to control a machine or computer. The EEG signals were weak to noise and had low spatial resolution because they were acquired by a non-invasive method involving, attaching electrodes along with scalp. This made it difficult to analyze the whole channel of EEG signals. And the previous method could not analyze multiple stimuli, the result being that the BCI system could not react to multiple orders. The method proposed in this paper made it possible analyze multiple-stimuli by grouping the channels. We searched the groups making the largest correlation coefficient summation of every member of the group with a BHS (Binary Harmony Search) algorithm. Then we assumed the EEG signal could be written in linear summation of groups using concentration parameters. In order to verify this assumption, we performed a simulation of three subjects, 60 times per person. From the simulation, we could obtain the groups of EEG signals. We also established the types of stimulus from the concentration coefficient. Consequently, we concluded that the signal could be divided into several groups. Furthermore, we could analyze the EEG in a new way with concentration coefficients from the EEG channel grouping.

Does Partner Volatility Have Firm Value Relevance? An Empirical Analysis of Strategic Alliances

  • Yang, Hang-Jin;Kim, Si-Hyun;Kim, Se-Won;Kang, Dal-Won
    • Journal of Korea Trade
    • /
    • v.23 no.6
    • /
    • pp.145-158
    • /
    • 2019
  • Purpose - Alliance members have constantly revised market strategies over time by withdrawing membership from a current alliance, joining another alliance, or constructing a new alliance. From the perspective of the signaling effect, the purpose of this study is to analyze the impacts of partner volatility (new member, old member, and new group) on firm value. Design/methodology - To analyze the impact of partner volatility on firm value, companies in strategic alliances are classified into the three groups of new partner, existing partner, and new alliance, and the effects on company value are verified through an event study and the signaling effect analysis. Findings - This study proved that new partners and newly formed strategic alliances have higher expectation effects than old partner company groups, and have a more positive effect on the relevant firms' stock prices. In addition, the result of the study showed the same valid results as the alliance levels, and showed that investors' expectations were higher with new partners and new alliances than with old partners. Research Implications - A new perspective on the signaling effects of strategic alliances among shipping lines was presented in this study by grouping alliance types including new member, old member, and new group. The results provide useful insights for selecting partners and firm values of alliance announcement times. Originality/value - This study analyzed partner volatility on relevant companies' stock prices from the perspective of investors from the global shipping conference reorganization in 2017. Strategic alliances were classified into the three categories of new partner, old partner, and new alliance, and the effects on firm value were verified.

Space Frame Integrated Design System based on PATRAN Database (PATRAN 데이타베이스를 기반으로 한 스페이스 프레임의 통합설계시스템)

  • Lee Jae Hong;Lee Joo Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.210-215
    • /
    • 1998
  • To design a space frame structure by the conventional method is not easy in practical sense since it is generally a three-dimensional complicated form, and stability and nonlinear problems are not easily checked in the design process. This paper describes two modules, the Model Generator which is based on PATRAN user interface that enables users to generate a complicated finite element model; the Optimum Design Module which analyzes output results of analysis program, and designs members of a space frame. The Model Generator is based on PCL while C++ language is used in the Optimum Design Module. Structural analysis is performed by using ABAQUS. All of these modules constitute Space Frame Integrated Design System. The Core of the system is PATRAN database, in which the Model Generator creates information of a finite element model. Then, PATRAN creates input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

An Efficient Group Key Distribution Mechanism for the Secure Multicast Communication in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 안전한 멀티캐스트 통신을 위한 효율적인 그룹 키 분배 방식)

  • Lim Yu-Jin;Ahn Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.339-344
    • /
    • 2006
  • Secure delivery of multicast data can be achieved with the use of a group key for data encryption in mobile ad hoc network (MANET) applications based on the group communication. However, for the support of dynamic group membership, the group key has to be updated for each member joining/leaving and, consequently, a mechanism distributing an updated group key to members is required. The two major categories of the group key distribution mechanisms proposed for wired networks are the naive and the tree-based approaches. The naive approach is based on unicast, so it is not appropriate for large group communication environment. On the other hand, the tree-based approach is scalable in terms of the group size, but requires the reliable multicast mechanism for the group key distribution. In the sense that the reliable multicast mechanism requires a large amount of computing resources from mobile nodes, the tree-based approach is not desirable for the small-sized MANET environment. Therefore, in this paper, we propose a new key distribution protocol, called the proxy-based key management protocol (PROMPT), which is based on the naive approach in the small-sized MANET environment. PROMPT reduces the message overhead of the naive through the first-hop grouping from a source node and the last-hop grouping from proxy nodes using the characteristics of a wireless channel.

Optimal Displacement Control of Shear Wall Structure using Sensitivity Analysis Technique (감도해석기법을 이용한 전단벽 구조물의 최적변위제어)

  • Lee Han-Joo;Jung Sung-Jin;Kim Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.121-128
    • /
    • 2005
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift for shear wall structures subject to lateral loads. To this end the displacement sensitivity depending on behavior characteristics of shear wall structures is established. Also, the approximation concept that can preserve the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Resizing sections in the stiffness-based optimal design are assumed to be uniformly varying in size and the technique of member grouping is considered for the improvement of construction efficiency Two types of 11-story shear wall structures are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF