• Title/Summary/Keyword: Melting pool

Search Result 48, Processing Time 0.025 seconds

Experimental Study for Keeping a Melting Pool in a Waste Pyrolysis Melting Incinerator (폐기물 열분해 용융소각로의 용탕 유지를 위한 실험적 연구)

  • Kim, Bong-Keun;Park, Ju-Won;Yu, Tae-U;Yang, Won;Jeun, Keum-Ha
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.151-155
    • /
    • 2006
  • The large amount of energy is consumed in a process for keeping the high temperature melting pool. For this reason, in addition to the wastes input to keep the high temperature melting pool, it is necessary for an auxiliary fuel and LOx to throw into the melting pool. So in this study, using a new melting furnace system, the experiments to keep the melting pool with minimal energy without throwing an auxiliary fuel and LOx was carried out. Also it is hoped that the results of the experiment will be available to analyze keeping a melting pool and behavior in a melting furnace.

  • PDF

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.31-51
    • /
    • 2021
  • Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.

UNDERLIGNING THERMOCAPILLARY EFFECTS BY ELECTRON BEAM MELTING OF THIN SPECIMENS

  • Domergue, L.;Camel, D.;Marya, S.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.199-204
    • /
    • 2002
  • Extensive investigations on cast to cast variations observed in steels have underlined the role of thermocapillary or surface tension driven fluid flow in welding operations. The behavior of weld pool under the electric arc is however affected by possible arc modifications linked to microchemistry variations in materials & this limits to some extent the real contribution from surface tension effects. Thus, electron beam welding with high vacuum was used to investigate thermo-capillary effects on thin austenitic stainless steels & nickel based alloys. The weld pool was monitored by video observations to estimate the importance of fluid flow during the melting & solidification phase. The results underline the importance of fluid flow on [mal solidification.

  • PDF

A Finite Element Model of Melt Pool for the Evaluation of Selective Laser Melting Process Parameters (선택적 레이저 용융 공정의 공정변수 평가를 위한 용융풀 유한요소 모델)

  • Lee, Kanghyun;Yun, Gun Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.195-203
    • /
    • 2020
  • Selective laser melting(SLM) is one of the powder bed fusion(PBF) processes, which enables quicker production of nearly fully dense metal parts with a complex geometry at a moderate cost. However, the process still lacks knowledge and the experimental evaluation of possible process parameter sets is costly. Thus, this study presents a finite element analysis model of the SLM process to predict the melt pool characteristics. The physical phenomena including the phase transformation and the degree of consolidation are considered in the model with the effective method to model the volume shrinkage and the evaporated material removal. The proposed model is used to predict the melt pool dimensions and validated with the experimental results from single track scanning process of Ti-6Al-4V. The analysis result agrees with the measured data with a reasonable accuracy and the result is then used to evaluated each of the process parameter set.

Close-contact melting of ice in a horizontal cylinder (수평원관내 얼음의 접촉융해과정)

  • ;;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2595-2606
    • /
    • 1995
  • Buoyancy-assisted melting of an unconstrained ice in an isothermally heated horizontal enclosure was numerically analyzed in a range of wall temperatures encompassing the density inversion point. The problem as posed here involves two physically distinct domains each of which has its own scales and respective heat transfer mode. These two domains join at the junction where the liquid squeezed out of the film region flushes into the lower melt pool. Both of these domains have been treated separately in the literature by a patching technique which invokes several, otherwise unnecessary, assumptions. The present study eliminates successfully such a superfluous procedure by treating the film and lower melt pool regions as a single domain. As a result of this efficient solution procedure, the interaction of the water stream ejected at the junction and the natural convection in the melt pool could be clarified for different wall temperatures. Though limited by two-dimensionality, the present results conformed indirectly the earlier reported transition of the flow pattern, as the wall temperature was increased over the density inversion point. The transient evolution of the melting surface, the time rate of change in melt volume fraction, the local and temporal variation of the heat transfer coefficients are analyzed and presented.

DUAL SPEED LASER RE-MELTING FOR HIGH DENSIFICATION IN H13 TOOL STEEL METAL 3D PRINTING

  • IM DOO JUNG;JUNGHO CHOE;JAECHEOL YUN;SANGSUN YANG;DONG-YEOL YANG;YONG-JIN KIM;JI-HUN YU
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.571-578
    • /
    • 2019
  • The densification behavior of H13 tool steel powder by dual speed laser scanning strategy have been characterized for selective laser melting process, one of powder bed fusion based metal 3d printing. Under limited given laser power, the laser re-melting increases the relative density and hardness of H13 tool steel with closing pores. The single melt-pool analysis shows that the pores are located on top area of melt pool when the scanning speed is over 400 mm/s while the low scanning speed of 200 mm/s generates pores beneath the melt pool in the form of keyhole mode with the high energy input from the laser. With the second laser scanning, the pores on top area of melt pools are efficiently closed with proper dual combination of scan speed. However pores located beneath the melt pools could not be removed by second laser scanning. When each layer of 3d printing are re-melted, the relative density and hardness are improved for most dual combination of scanning. Among the scan speed combination, the 600 mm/s by 400 mm/s leads to the highest relative density, 99.94 % with hardness of 53.5 HRC. This densification characterization with H13 tool steel laser re-melting can be efficiently applied for tool steel component manufacturing via metal 3d printing.

A Study of tow-Power Density Laser Welding Process with Evolution of me Surface (자유표면변형을 고려한 저에너지밀도 레이저 용접공정 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1202-1209
    • /
    • 2004
  • In this study, numerical investigation has been performed on the evolution of weld pool geometry with moving free surface during low-energy density laser welding process. The free surface elevates near the weld pool edge and descends at the center of the weld pool if d$\sigma$/dT is dominantly negative. It is shown that the predicted weld pool width and depth with moving free surface are a little greater than those with flat weld pool surface. It is also believed that the weld pool surface oscillation during the melting process augments convective heat transfer rate in the weld pool. The present analysis with moving free surface should be considered when We number is very small compared to 1.0 since the deformation of the weld pool surface is noticeable as We number decreases.

A study of low-power density laser welding process with evolution of free surface (자유표면변형을 고려한 저에너지밀도 레이저 용접공정 해석)

  • Ha, Eung-Ji;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.133-138
    • /
    • 2003
  • In this study, numerical investigation has been performed on the evolution of weld pool geometry with moving free surface during low-energy density laser welding process. The free surface elevates near the weld pool edge if ${\partial}{\sigma}/dT$ is dominantly negative. On the contrary, the free surface rise at the center of weld pool in case of mainly positive ${\partial}{\sigma}/dT$. The predicted weld pool width and depth with moving free surface are 5∼15%$5{\sim}15%$ greater than those with flat weld pool surface. It is considered that weld pool surface oscillation during melting process augments convective heat transfer rate in the weld pool.

  • PDF

The Influence of a Single Melt Pool Morphology on Densification Behavior of Three-Dimensional Structure Fabricated by Additive Manufacturing (적층 가공된 3차원 조형체의 치밀화에 미치는 단일 melt pool 형상의 영향)

  • Choe, Jungho;Yun, Jaecheol;Yang, Dong-Yeol;Yang, Sangsun;Yu, Ji-Hun;Lee, Chang-Woo;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • Selective laser melting (SLM) can produce a layer of a metal powder and then fabricate a three-dimensional structure by a layer-by-layer method. Each layer consists of several lines of molten metal. Laser parameters and thermal properties of the materials affect the geometric characteristics of the melt pool such as its height, depth, and width. The geometrical characteristics of the melt pool are determined herein by optical microscopy and three-dimensional bulk structures are fabricated to investigate the relationship between them. Powders of the commercially available Fe-based tool steel AISI H13 and Ni-based superalloy Inconel 738LC are used to investigate the effect of material properties. Only the scan speed is controlled to change the laser parameters. The laser power and hatch space are maintained throughout the study. Laser of a higher energy density is seen to melt a wider and deeper range of powder and substrate; however, it does not correspond with the most highly densified three-dimensional structure. H13 shows the highest density at a laser scan speed of 200 mm/s whereas Inconel 738LC shows the highest density at 600 mm/s.

An Analysis of Heat and Fluid Flow in the Laser Surface Melting with a Deformed Surface. (굴곡의 표면을 가진 금속의 레이저 용융에 대한 열 및 유체유동 해석)

  • Kim, Young-Deuk;Sim, Bok-Cheol;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.139-144
    • /
    • 2003
  • Laser melting problems with deformed substrates are investigated by axisymmetric numerical simulations. Source-based method is used to solve the energy equation, and the momentum equations are solved in the liquid domain with SIMPLER algorithm. Using a laser beam with a top-hat heat flux distribution, this study is performed to examine the effect of surface deformation, beam power density and surface tension force on the melt pool during laser melting. Surface temperature decreases with increasing surface deformation, while surface velocity increases. It is found that surface deformation, beam power density and surface tension force have a very significant effect on heat transfer and fluid flow during laser melting.

  • PDF