• Title/Summary/Keyword: Melting behavior

Search Result 348, Processing Time 0.026 seconds

The Formation Behavior of Non-metallic Inclusion in the Ba-added Hyper Duplex STS (Hyper Duplex STS 중 Ba 첨가 시 비금속개재물 생성거동)

  • Joo, S.W.;Hong, S.H.;Park, Y.M.;Kim, K.T.;Kim, J.S.;You, B.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.504-511
    • /
    • 2011
  • The alkaline earth metal Ba has a relatively low melting point. Because of its significantly high affinity to oxygen, nitrogen and sulfur, it is highly functional as a steel refining agent. But Ba can adversely affect the properties of steel especially the workability, because it can form a variety of inclusions. So, understanding of these inclusions is needed for improvement of the properties of steel. Thus a fundamental study in the formation behavior of non-metallic inclusions in Ba added Hyper Duplex STS melts was investigated. The amount of Ba, holding time and temperature were considered as experimental variables. The number of non-metallic inclusions decreased and the large particle size of non-metallic inclusions increased as the amount of Ba increased. The number of non-metallic inclusions also decreased and the large particle size increased with increased holding times and temperatures of molten steel.

Effect of Spreading of Neutral Sizing Agent, Alkylketene Dimer, on Sizing Development

  • Seo Won-Sung;Shin Jong-Ho;Cho Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.5 s.113
    • /
    • pp.1-7
    • /
    • 2005
  • The objective of this work was to investigate the effect of spreading behavior of the sizing agents (AKD or dialkyl ketone) on the sizing development of AKD-sized paper. There was a direct relationship between the spreading behavior of the sizing agents and their melting points. Both AKD and dialkyl ketone showed no substantial spreading until the temperature reaches to their melting points. Consequently, dialkyl ketone did not provide sizing development when the paper was heat-treated below $75^{\circ}C$, while AKD provided sizing effect even the paper heated at $50^{\circ}C$. The ketone, however, provided rather higher sizing effect than that of AKD, when the paper was heat-treated over $100^{\circ}C$. This result means that the ketone also gives sizing development to paper, moreover the ketone could give higher sizing effect to paper than AKD when it was melted and well spreaded on the fiber surface. While the ketone introduced to papers from hydrolyzed AKD emulsion could not contribute to sizing development.

Effect of Structure Change of Chocolate on Migration Behavior between Chocolate and Packaging Printing Solvent (쵸코렛의 구조 변화가 포장재 인쇄 용매의 전이에 미치는 영향)

  • An, Duek-Jun;Jang, Hean-Su;Jeong, Ji-Hwan;Lee, Jin-Seong;Han, Sang-Bin;Do, Se-Ho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.2
    • /
    • pp.47-50
    • /
    • 2019
  • Migration behavior of printing ink solvents on three types of chocolates with different fat content and fat compositions (different crystallinity) was investigated. Even though chocolate cream (29%) has lower fat content (29%) than that of chips (48%), it showed higher degree of migration. However, with increasing temperature, degree of migration was depended on mainly fat content. This result indicated that degree of migration was mainly affected by crystallinity at below melting point of chocolate, but the effect was diminshed as the temperature was close to melting temperature.

Analysis of Variation in the Surface Morphology of Aluminum Alloy by Repetitive Pulsed-laser Irradiation (반복적인 펄스레이저 조사에 의한 알루미늄 합금의 표면상태 변화분석)

  • Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young;Shin, Wan-Soon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.897-903
    • /
    • 2011
  • The objective of this study is to investigate the thermal behavior on material surface and the variation in the surface morphology of aluminum 6061 alloy by the Nd:YAG pulsed-laser irradiation. First, we predicted the surface temperature variation during pulsed-laser irradiation by using the two dimensional finite element analysis. When the pulsed-laser of 133 mJ energy and 5 ns pulse duration is irradiated on the surface of aluminum alloy, the material surface is thought to be melting because the surface temperature rises steadily up to about $660^{\circ}C$ exceeding the melting point. Also, the experimental results show that the solidification microstructure has been developed clearly after surface melting. Second, the diameter of melted zone was analysed by finite element analysis and measured by OM(Optical Microscopy). It increased logarithmically with increase in the number of laser irradiation. In addition, AFM(Atomic Force Microscopy) measurement showed an increase in the average surface roughness during pulsed-laser irradiation.

Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part I - Analysis on Void Formation and Microstructure (1.9wt%C 초고탄소 워크롤 단조 공정 : Part I - 기공생성 및 미세조직 분석)

  • Lim, H.C.;Lee, H.;Kim, B.M.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.456-462
    • /
    • 2013
  • Compression tests were conducted at the various temperatures and strain rates to investigate void formation and microstructures behavior of a 1.9wt%C ultrahigh carbon steel used in forged workrolls. The microstructure, grain size and volume fraction of cementite were determined using specimens deformed in the temperature range from 800 to $1150^{\circ}C$ and strain rates from 0.01 to 10/s. It was found from the microstructural analysis that the grain size is larger at higher temperatures and lower strain rate deformation conditions. In addition, a higher volume fraction of cementite was measured at lower temperatures. The brittle blocky cementite was fractured at $800^{\circ}C$ and $900^{\circ}C$ regardless of strain rate. As a result, numerous new micro voids were formed in the fragmented blocky cementite. It was also found that local melting can occur at temperatures of more than $1130^{\circ}C$. Therefore, the forging temperature should be controlled between $900^{\circ}C$ and $1120^{\circ}C$. The temperature rise, which depends on the anvil stroke and velocity, was estimated through cogging simulation to find the appropriate forging temperature and to prevent local melting due to plastic work.

Cocrystallization of Poly(1,4-cyclohexylenedimethylene terephthalate-co-hexamethylene terephthalate) Copolymers

  • Jeong, Young-Gyu;Jo, Won-Ho;Lee, Sang-Cheol
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.459-465
    • /
    • 2004
  • We have synthesized poly(l,4-cyclohexylenedimethylene terephthalate-co-hexamethylene terephthalate) [P(CT-co-HT)] random copolymers having various comonomer contents, from 0 to 100 mol% HT, by melt-condensation and have investigated their crystallization behavior by using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). We observed that P(CT-co-HT)s exhibit clear melting and crystallization peaks in their DSC thermograms and sharp diffraction peaks in their WAXD patterns for all of their copolymer compositions as a result of cocrystallization of the CT and HT units, even though the copolymers are statistically random copolymers. When we plotted the melting and crystallization temperatures of P(CT-co-HT)s and the d-spacings of all the reflections against the copolymer composition, we observed a eutectic point at ca. 80 mol% HT, which suggests that a crystal transition occured from a PCT-type crystal to a PHT-type crystal. Both the DSC and WAXD results support the notion that P(CT-co-HT) copolymers undergo an isodimorphic cocrystallization.

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.445-449
    • /
    • 2021
  • Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.

Effect of Stress Relieving Heat Treatment on Tensile and Impact Toughness Properties of AISI 316L Alloy Manufactured by Selective Laser Melting Process (선택적 레이저 용융 공정으로 제조된 AISI 316L 합금의 인장 및 충격 인성 특성에 미치는 응력 완화 열처리의 영향)

  • Yang, Dong-Hoon;Ham, Gi-Su;Park, Sun-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, an AISI 316 L alloy was manufactured using a selective laser melting (SLM) process. The tensile and impact toughness properties of the SLM AISI 316 L alloy were examined. In addition, stress relieving heat treatment (650℃ / 2 h) was performed on the as-built SLM alloy to investigate the effects of heat treatment on the mechanical properties. In the as-built SLM AISI 316 L alloy, cellular dendrite and molten pool structures were observed. Although the molten pool did not disappear following heat treatment, EBSD KAM analytical results confirmed that the fractions of the low- and high-angle boundaries decreased and increased, respectively. As the heat treatment was performed, the yield strength decreased, but the tensile strength and elongation increased only slightly. Impact toughness results revealed that the impact energy increased by 33.5% when heat treatment was applied. The deformation behavior of the SLM AISI 316 L alloy was also examined in relation to the microstructure through analyses of the tensile and impact fracture surfaces.

Deformation Behavior & Rolling Effect on the Hot Rolling of High Nitrogen Stainless Steel (고질소강의 열간압연시 변형거동 및 압연효과)

  • Kim, Y.D.;Kim, D.K.;Lee, J.W.;Bae, W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.329-332
    • /
    • 2008
  • Nowadays, It is required human body-friendly, good mechanical properties, and economical efficiency material, simultaneously. The material to meet above requirement condition rear up high nitrogen stainless steel(HNS). However, HNS have a lot of problem such as poor workability, hot crack sensitivity. So, It is needed the condition of plastic working to overcome above many problem. In this study, VIM ingot with 100kg was made by pressurized vacuum induction melting. And then, The slab perform for hot rolling was prepared by open-die forging. Hot rolling process was performed by computer simulation according to change of height reduction, rolling temperature, heating numbers, rolling pass and so forth. The results of analysis were investigated between analysis and lab-scale rolling product.

  • PDF

The Numerical Modeling on the I-t Characteristic of the Fuse Element (휴즈 엘리먼트의 용단특성에 대한 수치해석적 모델링)

  • Jeong, K.H.;Lee, S.H.;Park, D.K.;Kim, Y.L.;Lee, J.C.;Koo, K.W.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1187-1189
    • /
    • 1995
  • The paper is concerned with the pre-arcing behavior of rapid current limiting fuselink using copper as a melting element. The phenomenon is faced by a numerical simulation(especially, FDM is applicated) of the melting element. Through the results, we can know the trends of the I-t characteristics and temperature distribution along the x axis for different fuselink shapes with circular, rectangular, and skew restriction type respectively, to be good for designing the optimal element.

  • PDF