• Title/Summary/Keyword: Melt quenching technique

Search Result 29, Processing Time 0.023 seconds

Novel green Sr4ScAl3O10:Eu2+ phosphor prepared by the melt quenching technique

  • Toda, Kenji;Iwaki, Masato;Katsu, Minenori;Kamei, Shin-nosuke;Kim, Sun-Woog;Hasegawa, Takuya;Muto, Masaru;Yamanashi, Ryota;Sakamoto, Tatsuya;Ishigaki, Tadashi;Uematsu, Kazuyoshi;Sato, Mineo;Yoon, Dae-Ho
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.3
    • /
    • pp.276-279
    • /
    • 2019
  • New green-emitting Sr4ScAl3O10:Eu2+ phosphor was prepared using a novel melt quenching synthesis method. The temperature of raw materials irradiated with the strong light of the Xe arc-lamp was rose up to about 2273 K, followed by a sharp drop in the temperature after turn off the lamp. This method is a useful tool for rapid screening of novel phosphor materials.

A Study of Thermal Sensor Using Chalcogenide Classy Semiconductor (칼코게나이드 유리반도체를 이용한 온도센서에 관한 연구)

  • 임석범;임동준;양준모;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.439-442
    • /
    • 2001
  • Chalcogenide glassy semiconductors(CGS) can be obtained by the melt quenching technique. We have investigated the thin film heterostructures : metal-chalcogenide glassy semiconductors, where metal is copper, and chalcogenide glassy semiconductors are glasses of the system As-Se. CU/CGS film heterostructure were produced in the vacuum evaporator by the method of vacuum thermal evaporation. Doped films are very sensitive to external actions, and this property allows developing supersensitive precision sensors of temperature, humidity, illumination, and etc. based on them. Cu/CGS film has shown that resistance strongly depend on the temperature. The ratio of resistance vs. temperature has shown over a 2 k$\Omega$/degree. The slop of temperature and resistance shows linear.

  • PDF

Thin Film Thermal Sensor using Amorphous Chalcogenide Semiconductor (비정질 칼코게나이드 반도체를 이용한 박막온도센서)

  • Moon, H.D.;Lim, D.J.;Kim, H.Y.;So, D.S.;Lee, J.M.;Cho, B.H.;Kim, Y.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.727-730
    • /
    • 2002
  • Chalcogenide glassy semiconductors(CGS) can be obtained by the melt quenching technique. We have investigated the thin film heterostructures : metal-chalcogenide glassy semiconductors, where metal is copper, and chalcogenide glassy semiconductors are glasses of the system As-Se. Cu/CGS film heterostructure were produced in the vacuum evaporator by the method of vacuum thermal evaporation. Doped films are very sensitive to external actions, and this property allows developing supersensitive precision sensors of temperature, humidity, illumination, and etc. based on them. Cu/CGS film has shown that resistance strongly depend on the temperature. The slop of temperature and resistance shows linear.

  • PDF

A Study on the Microstructure of Melt-Quenched AISI 310 Stainless Steel (단롤법으로 제조한 AISI 310 스테인레스강의 급냉 조직에 관한 연구)

  • Choi, J.H.;Oh, M.S.;J., S.S.;Lee, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.19-26
    • /
    • 1996
  • Melt-quenching of steels leads to various metallographic effects such as refinement of grain size, extension of the solid solubility of carbon and alloying elements, and is expected to improve the mechanical properties of conventional steels. Furthermore, this technique is a useful method for producing sheet directly from liquid state. And it will lend itself to development as a continuous cast process which offers significant savings in energy and product costs. The purpose of this study is to present the microstructures of melt-quenched austenitic stainless steels. As the results of this study, the morphology of melt-quenched microstructure show that the roll contact area is columnar structure, and the free surface area is dendrite structure. As the line speed increases, the ratio of $d_{colunnar}/d_{total}$ increases from 0.12 to 0.60, but the ribbon thickness decreases from $150{\mu}m$ to $30{\mu}m$.

  • PDF

Characterization of glasses composed of PbO, ZnO, MgO, and B2O3 in terms of their structural, optical, and gamma ray shielding properties

  • Aljawhara H. Almuqrin;M.I. Sayyed;Ashok Kumar;U. Rilwan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2842-2849
    • /
    • 2024
  • The amorphous glasses containing PbO, ZnO, MgO, and B2O3 have been fabricated using the melt quenching technique. The structural properties have been analysed using the Fourier-transform infrared (FTIR) and Raman spectroscopy. Derivative of Absorption Spectra Fitting (DASF) method have been used to estimate the band gap energy from the UV-Vis absorption data which decreases from 3.02 eV to 2.66 eV with increasing the concentration of the PbO.The four glass samples 0.284 and 0.826 MeV showed unique variations in terms of gamma attenuation ability. LZMB4 glass sample proved to be the mist effective in terms of shielding of gamma radiation as it requires little distance compared to LZMB3, LZMB2 and LZMB1 to attenuate. RPE revealed a raise with increase in the thickness of the material and reduces as the energy raises. TF is superior in LZMB1 compared to LZMB2, LZMB3 and LZMB4, confirming that, LZMB4 will attenuate better. The ZEff of the materials was seen falling as the energy increases, confirming that the linear attenuation coefficient of the glass materials decreases when the energy is increased. The results confirmed that, glass material LZMB4 is the best option especially for gamma radiation shielding applications compared to LZMB3, followed by LZMB2, then LZMB1.

Comparative analysis of TiO2, Fe2O3, CaO and CuO in borate based glasses for gamma ray shielding

  • Heba Jamal Alasali;U. Rilwan;K.A. Mahmoud;Taha A. Hanafy;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4050-4055
    • /
    • 2024
  • This research intends to utilize melt-quenching technique in order to examine the radiation shielding capability of 10 % Mo, 10 % Na2O, 20 % PbO, and 60 % B2O3 glass system, with varying CaO, TiO2, CuO, Fe2O3 or Mo. XCOM and MCNP simulations were utilized to analyze the radiation shielding properties of the fabricated glasses. The results revealed CuO having the superior MAC of 49.91 cm2/g, then Fe2O3 with 49.24 cm2/g, followed by CaO with 49.10 cm2/g, and TiO2 with 48.49 cm2/g as the least. CuO and Fe2O3 were confirmed to have least HVL compared to CaO and TiO2. The value of the lead equivalent thickness showed fluctuation against the gamma energy, where it raisess within the photoelectric region and falls after the photoelectric region. The data reveal that, the lead equivalent thickness at 0.1 MeV were 7.88 cm, 7.86 cm, 7.81 cm and 7.80 cm for TiO2, Fe2O3, CaO, and CuO in the same order, respectively. The transmission factor (TF) raises as the gamma energy raises, having TiO2 as the highest with 76.068 %, while the radiation protection efficiency dropped as the energy raises.

Experimental investigation of effective atomic numbers for some binary alloys

  • Sharma, Renu;Sharma, J.K.;Kaur, Taranjot;Singh, Tejbir;Sharma, Jeewan;Singh, Parjit S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1571-1574
    • /
    • 2017
  • In the present work, the gamma ray backscattering technique was used to determine the effective atomic numbers for certain binary alloys. With the help of a muffle furnace, the binary alloys were synthesized using the melt quenching technique with different compositions of $_{82}Pb$, $_{50}Sn$, and $_{30}Zn$. The intensity distribution of backscattered photons from radioactive isotope $^{22}Na$ (511 keV) was recorded with the help of GAMMARAD5 [$76mm{\times}76mm$ NaI(Tl) scintillator detector] and analyzed as a function of both atomic number and thickness of the target material. The effective atomic numbers for the same binary alloys were also computed theoretically using the atomic to electronic cross-section method with the help of the mass attenuation coefficient database of WinXCom (2001). Good agreement was observed between theoretical and experimental results for the effective atomic numbers of all the selected alloys.

Glass Forming Ability of Bulk Amorphous Alloy Scrap by Fluxing (플럭스처리에 의한 벌크비정질합금 스크랩의 비정질형성능)

  • Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.94-99
    • /
    • 2010
  • When the returned scrap of bulk amorphous alloy is remelted, impurities such as oxides and intermetallic compounds increase. Glass forming ability of its scrap is deteriorated remarkably. Melt fluxing technique is introduced to enhance the glass forming ability during melting and freezing of bulk amorphous alloys. Cu and Zr based alloys are chosen. Small pieces of these alloy scraps and $B_2O_3$ flux are put together in a quartz tube. Cyclic heating and cooling are done by induction heating and water quenching or air cooling. Melting fluxing was effective for both Cu-based and Zr-based alloy, and their glass forming abilities were improved with increasing the number of fluxing.

Structural and Optical Characteristics of ChalcogenideGe_Sb_Se for Basic Aspheric Lens Design (비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se계 구조적, 광학적 특성 연구)

  • Ko, Jun Bin;Myung, Tae Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.133-137
    • /
    • 2014
  • The recent development of electro-optic devices and anticorrosion media has made it necessary investigate infrared optical systems with solid-solid interfaces of materials with amorphous characteristics. One of the most promising classes of materials for these purposes seems to be chalcogenide glasses, which are based on the Ge_Sb_Se system, have drawn much attention because of their use in preparing optical lenses and fibers that are transparent in the range of 3-12 um. In this study, a standard melt-quenching technique was used to prepare amorphous Ge_Sb_Sechalcogenideto be used in the design and manufacture of infrared optical products. The results of structural, optical, and surface roughness analyses of high purity Ge_Sb_Sechalcogenide glasses after various annealing processes reported.

AsGeSeS 박막의 광학적 조건에 따른 저항변화 특성에 대한 연구

  • Nam, Gi-Hyeon;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.248-248
    • /
    • 2010
  • We have demonstrated new functionalities of Ag-doped chalcogenide glasses based on their capabilities as solid electrolytes. The influence of silver on the properties of the newly formed materials is regarded in terms of diffusion kinetics, and Ag saturation is related to the composition of the hosting material. Silver saturated in chalcogenide glass has been used in the formation of solid electrolyte, which is the active medium in the programmable metallization cell (PMC) device. In this paper, we investigated the optical properties of Ag-doped chalcogenide thin film by He-Ne laser beam exposure, which is concerned with the Ag-doping effect of PMCs before or after annealing. Chalcogenide bulk glass was fabricated by a conventional melt quenching technique. Amorphous chalcogenide and Ag thin films were prepared by e-beam evaporation at a deposition rate of about $4\;{\AA}/sec$. As a result of resistance change with laser beam exposure, the resistance abruptly dropped from the initial value of $1.4\;M{\Omega}$ to the saturated value of $400\;{\Omega}$.

  • PDF