• 제목/요약/키워드: Melt pool morphology

검색결과 7건 처리시간 0.018초

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • 제8권1호
    • /
    • pp.31-51
    • /
    • 2021
  • Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.

적층 가공된 3차원 조형체의 치밀화에 미치는 단일 melt pool 형상의 영향 (The Influence of a Single Melt Pool Morphology on Densification Behavior of Three-Dimensional Structure Fabricated by Additive Manufacturing)

  • 최중호;윤재철;양동열;양상선;유지훈;이창우;김용진
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.187-194
    • /
    • 2017
  • Selective laser melting (SLM) can produce a layer of a metal powder and then fabricate a three-dimensional structure by a layer-by-layer method. Each layer consists of several lines of molten metal. Laser parameters and thermal properties of the materials affect the geometric characteristics of the melt pool such as its height, depth, and width. The geometrical characteristics of the melt pool are determined herein by optical microscopy and three-dimensional bulk structures are fabricated to investigate the relationship between them. Powders of the commercially available Fe-based tool steel AISI H13 and Ni-based superalloy Inconel 738LC are used to investigate the effect of material properties. Only the scan speed is controlled to change the laser parameters. The laser power and hatch space are maintained throughout the study. Laser of a higher energy density is seen to melt a wider and deeper range of powder and substrate; however, it does not correspond with the most highly densified three-dimensional structure. H13 shows the highest density at a laser scan speed of 200 mm/s whereas Inconel 738LC shows the highest density at 600 mm/s.

Analysis of Laser Control Effects for Direct Metal Deposition Process

  • Choi Joo-Hyun;Chang Yoon-Sang
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1680-1690
    • /
    • 2006
  • As a promising and novel manufacturing technology, laser aided direct metal deposition (DMD) process produces near-net-shape functional metal parts directly from 3-D CAD models by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using two sets of optical height sensors is designed for monitoring the melt-pool and real-time control of deposition dimension. With the feedback height control system, the dimensions of part can be controlled within designed tolerance maintaining real time control of each layer thickness. Clad nugget shapes reveal that the feedback control can affect the nugget size and morphology of microstructure. The pore/void level can be controlled by utilizing pulsed-mode laser and proper design of deposition tool-path. With the present configuration of the control system, it is believed that more innovation of the DMD process is possible to the deposition of layers in 3-D slice.

원자로 물질의 $ZrO_2$를 이용한 증기폭발 실험에서 용융물 거동 및 데브리의 분포 (An Investigation of Debris Configuration and Melt-Water Interaction in Steam Explosion Experiments using $ZrO_2$)

  • 송진호;김희동;홍성완;박익규;신용승;민병태;장영조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.57-62
    • /
    • 2001
  • Korea Atomic Energy Research Institute (KAERI) launched an intermediate scale steam explosion experiment named Test for Real cOrium Interaction with water (TROI) using reactor material to investigate whether the corium would lead to energetic steam explosion when interacted with cold water at low pressure. The melt-water interaction is confined in a pressure vessel with the multi-dimensional fuel and water pool geometry. The cold crucible technology, where the mixture of powder in a water-cooled cage is heated by high frequency induction, is employed. In this paper, results of the first series of tests ($TROI-1{\sim}5$) were discussed. The ZrO2 jets with 5kg mass and 5cm diameter were poured into the 67cm deep water pool at $30{\sim}95^{\circ}C$. Either spontaneous steam explosions or quenching was observed. The morphology of debris and pressure wave profiles clearly indicates the each case.

  • PDF

IN718 초내열 합금의 고속 적층 제조 속도 확보를 위한 최적 VED 활용 공정 변수 제어 방안 연구 (Study for the Process Parameter Control to Achieve High Build Rate of Laser Powder Bed Fused IN718 Super Alloy Using Optimal VED)

  • 김상욱;김규식;손용호;이기안
    • 한국분말재료학회지
    • /
    • 제29권5호
    • /
    • pp.390-398
    • /
    • 2022
  • Recently, considerable attention has been given to nickel-based superalloys used in additive manufacturing. However, additive manufacturing is limited by a slow build rate in obtaining optimal densities. In this study, optimal volumetric energy density (VED) was calculated using optimal process parameters of IN718 provided by additive manufacturing of laser powder-bed fusion. The laser power and scan speed were controlled using the same ratio to maintain the optimal VED and achieve a fast build rate. Cube samples were manufactured using seven process parameters, including an optimal process parameter. Analysis was conducted based on changes in density and melt-pool morphology. At a low laser power and scan speed, the energy applied to the powder bed was proportional to ${\frac{P}{\sqrt{V}}}$ and not ${\frac{P}{V}}$. At a high laser power and scan speed, a curved track was formed due to Plateau-Rayleigh instability. However, a wide melt-pool shape and continuous track were formed, which did not significantly affect the density. We were able to verify the validity of the VED formula and succeeded in achieving a 75% higher build rate than that of the optimal parameter, with a slight decrease in density and hardness.

ZrO$_2$를 이용한 증기폭발 실험 (Steam Explosion Experiments using ZrO$_2$)

  • 송진호;김희동;홍성완;박익규;신용승;민병태;김종환;장영조
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1887-1897
    • /
    • 2001
  • Korea Atomic Energy Research Institute (KAERI) launched an intermediate scale steam explosion experiment named "Test for Real Corium Interaction with water (TROI)" using reactor material to investigate whether the molten reactor material would lead to energetic steam explosion when interacted wish cold water at low pressure. The melt-water interaction experiment is performed in a pressure vessel with the multi-dimensional fuel and water pool geometry. The novel concept of cold crucible technology, where powder of the reactor material in a water-cooled cafe is heated by high frequency induction, is firstly implemented for the generation of molten fuel. In this paper, the lest facility and cold crucible technology are introduced and the results or the first series of tests were discussed. The 5 kg of molten ZrO$_2$jet was poured into the 67cm deep water pool at 30 ∼ 95 $\^{C}$. Either spontaneous steam explosions or quenching was observed. The morphology of debris and pressure wave profiles clearly indicate the differences between the two cases.

Spontaneous Steam Explosions Observed In The Fuel Coolant Interaction Experiments Using Reactor Materials

  • Jinho Song;Park, Ikkyu;Yongseung Sin;Kim, Jonghwan;Seongwan Hong;Byungtae Min;Kim, Heedong
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.344-357
    • /
    • 2002
  • The present paper reports spontaneous steam explosions observed in fuel coolant interaction experiments using prototypic reactor materials. Pure ZrO$_2$ and a mixture of UO$_2$ and ZrO$_2$ are used. A high temperature molten material in the form of a jet is poured into a subcooled water pool located in a pressure vessel. An induction skull melting technique is used for the melting of the reactor material. In both tests using pure ZrO$_2$ and a mixture of UO$_2$ and ZrO$_2$, either a quenching or a spontaneous steam explosion was observed. The morphology of debris and pressure profile clearly indicate the differences between the qunching cases and explosion cases. The dynamic pressure. dynamic impulse, water temperature, melt temperature, and static pressure Inside the containment chamber were measured . As the spontaneous steam explosion for the reactor material is firstly observed in the present experiments, the results of present experiments could be a siginificant step forward the understanding the explosion of the reactor material.