• Title/Summary/Keyword: Melt pond

Search Result 4, Processing Time 0.019 seconds

Detection of Arctic Summer Melt Ponds Using ICESat-2 Altimetry Data (ICESat-2 고도계 자료를 활용한 여름철 북극 융빙호 탐지)

  • Han, Daehyeon;Kim, Young Jun;Jung, Sihun;Sim, Seongmun;Kim, Woohyeok;Jang, Eunna;Im, Jungho;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1177-1186
    • /
    • 2021
  • As the Arctic melt ponds play an important role in determining the interannual variation of the sea ice extent and changes in the Arctic environment, it is crucial to monitor the Arctic melt ponds with high accuracy. Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), which is the NASA's latest altimeter satellite based on the green laser (532 nm), observes the global surface elevation. When compared to the CryoSat-2 altimetry satellite whose along-track resolution is 250 m, ICESat-2 is highly expected to provide much more detailed information about Arctic melt ponds thanks to its high along-track resolution of 70 cm. The basic products of ICESat-2 are the surface height and the number of reflected photons. To aggregate the neighboring information of a specific ICESat-2 photon, the segments of photons with 10 m length were used. The standard deviation of the height and the total number of photons were calculated for each segment. As the melt ponds have the smoother surface than the sea ice, the lower variation of the height over melt ponds can make the melt ponds distinguished from the sea ice. When the melt ponds were extracted, the number of photons per segment was used to classify the melt ponds covered with open-water and specular ice. As photons are much more absorbed in the water-covered melt pondsthan the melt ponds with the specular ice, the number of photons persegment can distinguish the water- and ice-covered ponds. As a result, the suggested melt pond detection method was able to classify the sea ice, water-covered melt ponds, and ice-covered melt ponds. A qualitative analysis was conducted using the Sentinel-2 optical imagery. The suggested method successfully classified the water- and ice-covered ponds which were difficult to distinguish with Sentinel-2 optical images. Lastly, the pros and cons of the melt pond detection using satellite altimetry and optical images were discussed.

Sewage Treatment Using Natural Systems and Effluent Reuse for Crop Irrigation in Small Communities

  • Ham, Jong-Hwa;Yoon, Chun-G.;Jeon, Ji-Hong;Hwang, Ha-Sun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.70-82
    • /
    • 2003
  • A pilot study was performed from July 1998 to December 2002, including winter performance, to examine seasonal performance of a constructed wetland and subsequent pond system for treatment of sewage in small communities of Korea. Pond was operated as a intermittent-discharge pond during winter period, and continuous flow system during growing season; its effects was evaluated from December 2001 to April 2003. The subsurface flow (SSF) wetland was satisfactory for treating sewage with good removal efficiency even during the winter period. The wetland effluent concentrations of $BOD_5$ and TSS were often higher in winter than in the growing season, but this was explained by the higher loading rates, rather than lower removal efficiency. The relatively poor-quality wetland effluent was further polished during winter in the pond. The upper layer of the pond water column became remarkably clear immediately after ice melt. In the growing season, ponds could be operated as a continuous flow system to remove nutrients and pathogens, and the effluent of pond could be reused as a supplemental irrigation water without risk of infection by sewage-borne pathogens as well as causing adverse effect on growth and yield. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the intermittent-discharge pond was found to be effective for further polishing if necessary. Therefore, the combination of a wetland and subsequent pond system and reuse of effluent as crop irrigation water is recommended as a practical alternative to treat sewage in Korean small communities, and partial discharge of pond water in March is suggested.

Feasibility Study of Wetland-pond Systems for Water Quality Improvement and Agricultural Reuse (습지-연못 연계시스템에 의한 수질개선과 농업적 재이용 타당성 분석)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.344-354
    • /
    • 2004
  • A pilot study was performed from September 2000 to April 2004 to examine the feasibility of the wetland-pond system for the agricultural reuse of reclaimed water. The wetland system was a subsurface flow type, with a hydraulic residence time of 3.5 days, and the subsequent pond was 8 $m^3$ in volume (2 m ${\times}$ 2 m ${\times}$ 2 m) and operated with intermittent-discharge and continuous flow types. The wetland system was effective in treating the sewage; median removal efficiencies of $BOD_5$ and TSS were above 70.0%, with mean effluent concentrations of 27.1 and 16.8 mg $L^{-1}$, respectively, for these constituents. However, they did often exceed the effluent water quality standards of 20 mg $L^{-1}$. Removal of T-N and T-P was relatively less effective and mean effluent concentrations were approximately 103.2 and 7.2 mg $L^{-1}$, respectively. The wetland system demonstrated high removal rate (92 ${\sim}$ 90%) of microorganisms, but effluent concentrations were in the range of 300 ${\sim}$ 16,000 MPN 100 $mL^{-1}$ which is still high for agricultural reuse. The subsequent pond system provided further treatment of the wetland effluent, and especially additional microorganisms removal in addition to wetland-pond system could reduce the mean concentration to 1,000 MPN 100 $mL^{-1}$ from about $10^5$ MPN 100 $mL^{-1}$ of wetland influent. Other parameters in the pond system showed seasonal variation, and the upper layer of the pond water column became remarkably clear immediately after ice melt. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the subsequent pond was effective for further polishing. This study concerned agricultural reuse of reclaimed water using natural systems. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, wetland- pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water in rural area.

Observation of Surface Displacement on Glaciers, Sea Ice, and Ice Shelves Around Canisteo Peninsula, West Antarctica Using 4-Pass DInSAR (4-Pass DInSAR를 이용한 서남극 Canisteo 반도 주변 빙하, 해빙, 빙붕의 표면 변위 관측)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.190-195
    • /
    • 2009
  • 서남극 빙상의 감소 속도는 급격히 가속화되고 있으며, 전 지구적 해수면 상승과 기후변화 예측을 위해 이 지역에 대한 지속적인 관찰이 요구되고 있다. 본 연구에서는 서남극 Canisteo 반도와 주변 지역이 촬영된 2쌍의 ERS-1/2 tandem pair에 4-pass 위상차분간섭기법을 적용하여 위상차분간섭도를 생성하였고, 빙하와 해빙, 그리고 빙붕의 표면 변화를 관찰하였다. 위상차분간섭도에서 센서 방향으로의 변위를 추출한 결과 해안 빙하와 그에 인접한 정착빙은 같은 방향의 움직임을 나타냈다. 특히 빙하와 맞닿은 부분의 정착빙은 그 움직임이 다른 부분에 비해 컸는데, 이는 빙하의 하강 및 유실이 해빙에 영향을 끼치는 것으로 판단된다. 정착빙의 가장자리에 위치한 해빙은 해류의 영향에 기인하는 움직임을 보였으며, 이 해빙의 유형이 부빙 또는 유빙임을 알 수 있었다. 반도 양옆에 위치한 빙붕은 모두 센서 방향으로의 움직임을 보였으나 그 크기에서 차이를 나타냈다. 빙붕의 표면에서는 원형의 국부적 함몰이 다수 관찰되었는데, 이는 남극저층수의 적은 유입으로 인해 형성된 melt pond로 추정된다.

  • PDF