• Title/Summary/Keyword: Melt index

Search Result 92, Processing Time 0.022 seconds

Filtration Characteristics of Polymeric Porous Materials Composed of Polypropylene and Polyethylene (Polypropylene과 Polyethylene으로 구성된 기공성 고분자 소재의 여과특성)

  • Ahn, Byeng-Gil;Oh, Kyeong-Keun;Choi, Ung-Soo;Kwon, Oh-Kwan
    • Clean Technology
    • /
    • v.4 no.2
    • /
    • pp.32-40
    • /
    • 1998
  • The polymeric porous materials which consist of polypropylene(PP) and polyethylene(PE) powder were prepared to apply to the air purification systems by extrusion sintering method. SEM analysis showed that a composite polymeric porous structure made up of PP and PE was obtained, where PE was melted and adhered to PP because the melting temperature of PE was lower than that of PP. The filtration characteristics and mechanical properties of polymeric porous materials were investigated by varying the head die temperature of the extruder, extrusion velocity, and the melt index and quantity of PE. The filtration efficiency was proportional to the quantity of PE but inversely proportional to the melt index of PE. The polymeric porous materials composed of PP and PE, which was made by extrusion sintering method, was found to be suitable for the filter element of the air purification system.

  • PDF

Control of Molecular Weight Properties of Polycarbonate using End Capping Agents (말단캡핑제를 이용한 폴리카보네이트의 분자량 특성 조절)

  • Lee, Bom Yi;Kim, Youn Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1512-1518
    • /
    • 2013
  • Polycarbonates (PCs) with six different end capping agents were synthesized from melt polymerization. Chemical structure of the synthesized PC was determined by FT-IR spectroscopy. The average molecular weight and distribution, glass transition and thermal degradation temperatures were determined by GPC, DSC and TGA. Average molecular weight changed with the chemical structure of end capping agent, and 4-tert-butylphenol was estimated as the optimum end capping agent. The average molecular weights of PCs decreased with the concentration of the agent, the number average molecular weight was observed as 20,000 - 30,000 when 0.05-0.15 mol% of 4-tert-butylphenol added in PCs. The melt viscosities and glass transition temperature of the PCs decreased with molecular weight. The change for adding method of the agent affected on both the molecular weight distribution and decrease in power law index.

Thermal Behavior and Physical Properties of Low Density Polyethylene/Metallocene Linear Low Density Polyethylene Blends (저밀도 폴리에틸렌/메탈로센 선형 저밀도 폴리에틸렌 블렌드의 열적 거동 및 물성)

  • Kim, Jang-Yup;Hyun, Uk;Lee, Dong-Ho;Noh, Seok-Kyun;Lee, Sang-Won;Huh, Wan-Soo
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.502-507
    • /
    • 2003
  • The thermal and physical properties of low density polyethylene melt-blended with Metallocene linear low density polyethylenes were investigated. Since the Metallocene polyethylenes have similar MW and MWD except m-LLDPE4, it can be said that the thermal behavior and mechanical properties of the blends depend upon the l-octene comonomer content. The melting behavior of LDPE/m-LLDPE1 blends shows two melting peaks with LDPE contents higher than 50%, while the other blends show only one melting peak. It was observed that the blends show higher crystallization temperature and higher crystallinity with lower comonomer content. Initial modulus of a blend exhibited the behavior proportional to the crystallinity and the elongation at break of the blends was increased with increasing the m-LLDPE composition. Melt indices of the blends decreased with increasing the comonomer content of Metallocene LLDPE. Melt Index values of the blends show negative deviation.

Preparation of Flammability Artificial Hair based on Super Engineering Plastic (슈퍼엔지니어링 플라스틱 기반 난연성 가발사 제조)

  • Choi, Hyun-Jung;Gong, Da Jeong;Youn, Chulmin;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Super engineering plastic(SEP) are applied to high performance and high value industries due to their excellent mechanical properties and high continuous operating temperature. Among them, PES and PEI are amorphous SEPs, and have the advantages of high flexibility, mechanical properties, transparency, and thermal stability. In this study, polyethersulfone(PES) and polyetherimide(PEI) fibers were manufactured to produce flame retardant artificial hair. PES and PEI fibers prepared through a melt-spinning process at a high temperature of 360 to 420℃. They are compared with commercial artificial hair by thermal gravimetric analysis(TGA), linear density, tenacity, and limited oxygen index(LOI) analysis. PES and PEI fibers have similar linear density and tenacity to commercial artificial hair, while their thermal stability and flame retardant are excellent. In particular, flame retardant was analyzed through LOI value and PES was 35.1%, which is superior to commercial artificial hair PET/Br(28.2%) and PET/P(20.2%). Therefore, PES and PEI are suitable as artificial hair for flame retardant.

Study on the physical properties of nylon66/glass fiber composites as a function of extrusion number (나일론66/유리섬유 복합체의 압출횟수에 따른 특성 연구)

  • Lee, Bom Yi;Kim, Youn Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3990-3996
    • /
    • 2014
  • Because the physical properties can be decreased when a Nylon 66/glass fiber composite is injected into a mold over $300^{\circ}C$, a systematic study of the thermal history in the case of re-use is needed. Nylon 66/glass fiber extrudates as a function of the extrusion number were prepared using a twin screw extruder at 305/290/273/268/265/$260^{\circ}C$. The chemical structure, thermal properties, melt index, crystal structure, Izod impact strength, and rheological properties were measured by Fourier transform infra-red (FT-IR), melt indexer, DSC, TGA, XRD, Izod impact tester, and dynamic rheometer. The FT-IR spectra indicated that the number of extrusions did not affect the chemical structure. The decrease in molecular weight with increasing extrusion number was confirmed by the melt index and the complex viscosity of extrudates. Based on the DSC and TGA results, the thermal history had no effect on the melting temperature, regardless of the number of extrusions, but the degradation temperature decreased up to $20^{\circ}C$ with increasing extrusion number. The Izod impact strengths of the extrudates were found to decrease with increasing extrusion number. No structural change after extrusion was also confirmed because there was no change in the slope and shape of the G'-G" plot.

Effect of Thermal History on the Physical Properties of Nylon66 (열 이력이 나일론66의 물성에 미치는 영향)

  • Lee, Bom Yi;Jo, Chan Woo;Shim, Chang Up;Lim, Su Jung;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • Nylon66 extrudates as a function of the extrusion number were prepared by a twin screw extruder. Chemical structures, thermal properties, melt index, crystal structures, mechanical properties such as the tensile strength, elongation at break and impact strength, and rheological property were measured by FT-IR, $^1H$-NMR, melt indexer, DSC, TGA, XRD, universal tensile tester, Izod impact tester, and rheometer. FT-IR and $^1H$-NMR characterizations indicated that the number of extrusions did not affect the chemical structure. The decrease in the molecular weight was checked by the melt index of extrudates. There were no effects of the thermal history on the melting and degradation temperature. The tensile and impact strength and modulus were found to be similar, regardless of the number of extrusions, but the elongation decreased significantly. The complex viscosity of extrudates at low frequencies decreased with the extrusion number. No structural changes after extrusion were confirmed from the fact that there was no change in the slope and shape of G'-G" plot.

An Enhanced Water Solubility and Antioxidant Effects of Seed and Pamace of Schisandra chinensis (Turcz.) Baill Formulation by HME (Hot-Melt Extrusion) (HME (Hot-Melt Extrusion)를 이용한 오미자 씨 및 박의 수용성 및 항산화 효과 향상)

  • Eun Ji Go;Min Ji Kang;Min Jun Kim;Jung Dae Lim;Young-Suk Kim;Jong-Min Lim;Min Jeong Cho;Tae Woo Oh;Seokho Kim;Kyeong Tae Kwak;Byeong Yeob Jeon
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.215-230
    • /
    • 2023
  • Objectives : Schisandra chinensis (Turcz.) Baill contains many nutrients and exhibits high physiological functions. It has been shown that Schisandra seed and pamace contains more nutrients than fruits and thus have higher antioxidant efficacy. In this study, seed and pamace of Schisandra chinensis (Turcz.) Baill (SPSC) were treated with hot-melt extrudate (HME) extrusion to produce water-soluble nanoparticles. Methods : SPSC was treated with HME to prepare nanoparticles. In this process, excipients (hydroxypropyl methylcellulose, pullulan, 2-hydroxylpropyl-beta-cyclodextrin, lecithin) were added to prepare a hydrophilic polymer matrix. To compare and analyze the antioxidant effect and schizandrin content, total flavonoid content, total phenol content and ABTS assay were measured. To confirm the effect of increasing the water solubility of the particles, particle size and water solubility index measurements were performed. The molecular of the material was analyzed using Fourier transform infrared spectroscopy (FT-IR). Results : The particle size of HME extrudates decreased, while total phenols, flavonoids, schizandrin, antioxidant effect, and solubility increased. Through FT-IR, it was confirmed that the SPSC and the extrudate exhibit the same chemical properties. In addition, it was confirmed that when extracted with water, it exhibited a higher antioxidant effect than the ethanol extract. Conclusions : HME technology increased the solubility of SPSC, which are processing by-products, and improved their antioxidant effect to a higher degree. It was confirmed that SPSC could be used as an eco-friendly, high value-added material.

Characteristics of LED Lighting Device Using Heat Sinks of 7.5 W CMP-PLA (7.5 W CMP-PLA 방열판을 적용한 LED 등기구 특성)

  • Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.920-923
    • /
    • 2013
  • In this paper, the characteristics of a carbon nanotube composite heat sink proposed to replace the advanced Al heat sinks for LED lighting devices were studied. Proposed CMP-PLA heat sink was made by mixing 20~70 wt% carbon nanotube, 20~70 wt% bio-degradable polymer of melt-blended PLA (poly lactic acid) and PBS (poly butylene succinate) and PLA nucleating agents composed of the mixture of soybean oil and biotites, at $150{\sim}220^{\circ}C$ with 1,000~1,500 rpm. Optical and electric characteristics of 7.5 W LED lighting devices using heat sinks with such prepared CMP-PLA were investigated. And, the properties of the heat, which was not released from the CMP-PLA type heat sinks, was also investigated. The color temperature of LED lighting devices using the CMP-PLA heat sinks was 5,956 K, which is x= 0.32 and y= 0.34 in the XY chromaticity, and the color rendering index was 75. The luminous flux and the luminous efficiency of LED lighting devices using the CMP-PLA heat sinks was 540.6 lm and 72.68 lm/W respectively. Measured initial temperature of the heat sinks was $27^{\circ}C$, and their temperature increased as time to be saturated at $52^{\circ}C$ after an hour.

A Study on the Preparation of Thermoplastic Powder Coating Material and Its Flame Retardancy (열가소성 분말 코팅소재 제조 및 난연특성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.45-52
    • /
    • 2010
  • The purpose of this study is application to flame retardant powder coating(FRPC) material consisting of ammonium polyphosphate(APP) and magnesium hydroxide($Mg(OH)_2$) as a halogen free flame retardant into thermoplastic resin(LDPE-g-MAH). For improvement of adhesion, LDPE-g-MAH was synthesized from low density polyethylene(LDPE) and maleic anhydride(MAH). The mechanical properties as melt flow index, pencil hardness, cross-hatch adhesion and impact resistance of FRPC were measured. Also, the limited oxygen index(LOI) values were measured 17.3vol%, 31.1vol% and 33.7vol% for LDPE-g-MAH, FRPC-3(APP 15wt%, $Mg(OH)_2$ 15wt%) and FRPC-5(APP 30 wt%), respectively. The thermo gravimetry/differential thermal analysis(TG/DTA) of FPRC-3 was observed endothermic peak at $340^{\circ}C$ and $450^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by APP and $Mg(OH)_2$. It was showed V-0 grade for FRPC-3 and FRPC-4(APP 20wt%, $Mg(OH)_2$ 10wt%) that a char formation and drip suppressing effect, and combustion time reduced by UL94(vertical burning test). It was confirmed that flame retardancy was improved with the synergy effect because of char formation by APP and $Mg(OH)_2$.

Investigation of the numerical analysis for the ultrasonic vibration in the injection molding

  • Lee, Jae-Yeol;Kim, Nak-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • We studied the flow characteristics of the polymer melt in the injection molding process with ultrasonic vibration by using the numerical analysis. To minimize the error between the experimental data and numerical result, we presented a methodology using the design of experiments and the response surface method for reverse engineering. This methodology can be applied to various fields to obtain a valid and accurate numerical analysis. Ultrasonic vibration is generally applied between an extruder and the entrance of a mold for improvement the flow rate in injection molding. In comparison with the general ultrasonic process, the mode shape of the mold must be also considered when the ultrasonic vibration is applied on the mold. The mode shape is defined as the periodic and spatial deformation of the structure owing to the effect of the vibration, and it varies greatly according to vibration conditions such as the forcing frequency. Therefore, we considered new index and found the forcing frequency for obtaining the highest flow rate within the range from 20 to 60 kHz on the basis of the index. Ultimately, we presented the methodology for not only obtaining a valid and accurate numerical analysis, but also for finding the forcing frequency to obtain the highest flow rate in injection molding using ultrasonic vibration.