• Title/Summary/Keyword: Mega structure

Search Result 132, Processing Time 0.027 seconds

Wave Response Analysis and Future Direction of Mega-Float

  • Park, Sung-Hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.153-168
    • /
    • 2001
  • In the country where the population concentrates in the metropolis with the narrow land, development of th ocean space is necessary. Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And very large floating structure are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave eternal force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structure part of this model. And the analysis is carried out using the boundary element method in the fluid part. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Development of Work Breakdown Structure Basis for Mega-Project (메가프로젝트를 위한 업무분류체계기준(WBS Basis) 개발)

  • Lee, Hei-Duck;Seo, Yonng-Chil;Lee, Seung-Hoon;Woo, Yu-Mi
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.441-444
    • /
    • 2008
  • 메가프로젝트(Mega-Project)는 다양한 유형의 시설군을 복합 개발하는 건설사업으로서 규모가 크고 복잡한 경우가 많기 때문에 종합적인 사업관리에 어려움이 따른다. 따라서 메가프로젝트는 기존의 단위프로젝트 수준이 아닌 프로그램 수준에서의 관리체계를 필요로 하며 그에 적합한 업무분류체계(WBS)를 구축해야 한다. 업무분류체계는 사업관리를 위한 전체적인 구조를 수립하는 기반으로서, 현재 프로그램 관리 수준의 업무분류체계의 기준이 갖추어지지 않은 상황이다. 이에 본 연구에서는 메가프로젝트를 위한 업무분류체계기준(WBS Basis)를 개발하여 메가프로젝트의 업무분류체계 구축을 지원하고자 한다. 메가프로젝트 생애주기에 포함되는 전체 시설군, 업무 및 용역, 기록문서, 정보 등을 대상으로 하였으며, 기존 사례분석과 관련 분류체계들을 바탕으로 초안을 작성하였다. 이후 현장시험을 통한 검증을 거쳐 최종 업무분류체계기준을 완성하였고 분류내용과 활용방안을 소개한다.

  • PDF

A Study on the Reduction Analysis of the Response of the Mega-Float Offshore Structure in Regular Wave (1st Report) (대형 부류해양구조물의 파낭중 응답의 저감해석에 관한 연구(제1보))

  • 박성현;박석주
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.1
    • /
    • pp.85-95
    • /
    • 2000
  • In the country where the population concentrates in the metropolis with the narrow land, development of the ocean space is necessary. Recently, mega-float offshore structure has been studied as one of the effective utilization of the ocean space. And very large floating structures are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave external force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. The validity of analysis method is verified in comparison with the experimental result in the Japan Ministry of Transport Ship Research Institution. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Structural Design of Nakanoshima Festival Tower

  • Okada, Ken;Yoshida, Satoshi
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.173-183
    • /
    • 2014
  • Nakanoshima Festival Tower is a 200 m high-rise complex building which contains a renewed 2700-seat capacity concert hall known as "Festival Hall" and offices including headquarter of a news company. In order to build up an office tower on the hall which requires large open space, a giant truss system is employed. The giant trusses being composed of mega-trusses and belt-trusses support all the building weight above them and transfer the load to the outside of the hall. The building also requires high seismic resistance performance for a news company. Application of mid-story seismic isolation enables the building to satisfy high-level seismic resistance criteria.

PROLONGATIONS OF G-STRUCTURES IMMERSED IN GENERALIZED ALMOST r-CONTACT STRUCTURE TO TANGENT BUNDLE OF ORDER 2

  • Khan, Mohammad Nazrul Islam;Jun, Jae-Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.421-427
    • /
    • 2018
  • The aim of this study is to investigate the prolongations of G-structures immersed in the generalized almost r-contact structure on a manifold M to its tangent bundle T(M) of order 2. Moreover, theorems on Hsu structure, integrability and (${F\limits^{\circ}},\;{{\xi}\limits^{\circ}}{{\omega}\limits^{\circ}}_p,\;a,\;{\epsilon}$)-structure have been established.

Effect of high-strength concrete on shear behavior of dry joints in precast concrete segmental bridges

  • Jiang, Haibo;Chen, Ying;Liu, Airong;Wang, Tianlong;Fang, Zhuangcheng
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1019-1038
    • /
    • 2016
  • The use of high-strength concrete (HSC) in precast concrete segmental bridges (PCSBs) can minimize the superstructure geometry and reduce beam weight, which can accelerate the construction speed. Dry joints between the segments in PCSBs introduce discontinuity and require special attention in design and construction. Cracks in dry joints initiate more easily than those in epoxy joints in construction period or in service. Due to the higher rupture strength of HSC, the higher cracking resistance can be achieved. In this study, shear behavior of dry joints in PCSBs was investigated by experiments, especially focusing on cracking resistance and shear strength of HSC dry joints. It can be concluded that the use of HSC can improve the cracking resistance, shear strength, and ductility of monolithic, single-keyed and three-keyed specimens. The experimental results obtained from tests were compared with the AASHTO 2003 design provisions. The AASHTO 2003 provision underestimates the shear capacity of single-keyed dry joint C50 and C70 HSC specimens, underestimates the shear strength of three-keyed dry joint C70 HSC specimens, and overestimates the shear capacity of three-keyed dry joint C50 HSC specimens.

Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams

  • Fang, Zhuangcheng;Jiang, Haibo;Chen, Gongfa;Dong, Xiaotong;Shao, Tengfei
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.837-851
    • /
    • 2020
  • This study aims to examine the interface shear behavior between precast high-strength concrete slabs with pockets and steel beam to achieve accelerated bridge construction (ABC). Twenty-six push-out specimens, with different stud height, stud diameter, stud arrangement, deck thickness, the infilling concrete strength in shear pocket (different types of concrete), steel fiber volume of the infilling concrete in shear pocket concrete and casting method, were tested in this investigation. Based on the experimental results, this study suggests that the larger stud diameter and higher strength concrete promoted the shear capacity and stiffness but with the losing of ductility. The addition of steel fiber in pocket concrete would promote the ductility effectively, but without apparent improvement of bearing capacity or even declining the initial stiffness of specimens. It can also be confirmed that the precast steel-concrete composite structure can be adopted in practice engineering, with an acceptable ductility (6.74 mm) and minor decline of stiffness (4.93%) and shear capacity (0.98%). Due to the inapplicability of current design provision, a more accurate model was proposed, which can be used for predicting the interface shear capacity well for specimens with wide ranges of the stud diameters (from13 mm to 30 mm) and the concrete strength (from 26 MPa to 200 MPa).

Generic optimization, energy analysis, and seismic response study for MSCSS with rubber bearings

  • Fan, Buqiao;Zhang, Xun'an;Abdulhadi, Mustapha;Wang, Zhihao
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.347-359
    • /
    • 2020
  • The Mega-Sub Controlled Structure System (MSCSS), an innovative vibration passive control system for building structures, is improved by adding lead rubber bearings (LRBs) on top of the substructure. For the new system, a genetic algorithm is used to optimize the dynamic parameters and distributions of dampers and LRBs. The program uses various seismic performance indicators as optimization objectives, and corresponding results are compared. It is found that the optimization procedure for maximizing the energy dissipation ratio yields the best solutions, and optimized models have consistent seismic performances under different earthquakes. Seismic performances of optimized MSCSS models with and without LRBs, as well as the traditional Mega-Sub Structure model, are evaluated and compared under El Centro wave, Taft wave and 20 other artificial waves. In both elastic and plastic analysis, the model with LRBs shows significantly smaller story drift and horizontal acceleration than those of the other two models, and fewer plastic hinges are developed during severe earthquakes. Energy analysis also shows that LRBs installed in proper locations increase the deformation and energy dissipation of dampers, thereby significantly reduce the kinetic, potential, and hysteretic energy in the structure. However, LRBs do not have to be mounted on all the additional columns. It is also demonstrated that LRBs at unfavorable locations can decrease the energy dissipation for dampers. After LRBs are installed, the optimal damping coefficient and the optimal damping exponent of dampers are reduced to produce the best damping effect.

Alternative Design of Mega Structural Members of a Super-tall Building using 800MPa Grade High-performance Steel Plate (800MPa급 고성능 강재 적용한 초고층 메가 부재 대안설계)

  • Cho, So Hoon;Kim, Do Hwan;Kim, Jin Won;Lee, Seung Eun;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.299-309
    • /
    • 2014
  • HSA800 is a new high strength steel (HSS) plate for building structures developed by POSCO and RIST in 2011. It has upper and lower bounds for yield ($F_y$) and tensile ($F_u$) strength as of 650-770MPa and 800-950MPa, respectively, with yield ratio ($F_y/F_u$) limit as of 0.85 which make steel quality more reliable and enhance the seismic resistance of structures. As made by TMCP, it has a good weldability without increasing carbon percentage. The objective of this study is to provide alternative design of mega-structural members of the Lotte World Tower (555m, 123 story), a first super-tall building in Korea, using HSS considering structural safety, constructability, and cost-effectiveness. Steel outrigger trusses, belt-trusses and steel exterior columns were selected and analyzed to evaluate the structural performance between original and alternative designs using HSS. The results show that HSS can be applied to the members which do not affect lateral stiffness of a building and, in this study, approximately 1100tons of steel were saved. It implies that HSS can save overall construction costs - manufacturing, delivery, and erection costs - by reducing mega structural member size. HSA800 was very first applied to the Lotte World Tower based on the results of this study.