• Title/Summary/Keyword: Mef2c

Search Result 36, Processing Time 0.019 seconds

Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c

  • Jiang, Yong;Liu, He;Liu, Wen-jing;Tong, Hai-bin;Chen, Chang-jun;Lin, Fu-gui;Zhuo, Yan-hang;Qian, Xiao-zhen;Wang, Zeng-bin;Wang, Yu;Zhang, Peng;Jia, Hong-liang
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.292-298
    • /
    • 2016
  • Aquaporin 1 (AQP1) is expressed in most microvasculature endothelial cells and forms water channels that play major roles in a variety of physiologic processes. This study aimed to delineate the transcriptional regulation of AQP1 by Mef2c in endothelial cells. Mef2c cooperated with Sp1 to activate human AQP1 transcription by binding to its proximal promoter in human umbilical cord vein endothelial cells (HUVEC). Over-expression of Mef2c, Sp1, or Mef2c/Sp1 increased HUVEC migration and tube-forming ability, which can be abolished AQP1 knockdown. These data indicate that AQP1 is a direct target of Mef2c in regulating angiogenesis and vasculogenesis of endothelial cells.

Biochemical Characterization of Serine Proteases with Fibrinolytic Activity from Tenodera sinensis (Praying Mantis)

  • Kim, Yeong-Shik;Hahn, Bum-Soo;Cho, So-Yean;Chang, Il-Moo
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.97-104
    • /
    • 2001
  • Three types of proteases (MEF-1, MEF-2 and MEF-3) were purified from the egg cases of Ten-odera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60 and affinity chromatography on DEAE Affi-Gel blue gel. The proteases were assessed homogeneous by SDS-polyacrylamide gel electrophoresis and have molecular weight of 31,500, 32,900 and 35,600 Da, respectively. The N-terminal regions of the primary structure were compared and they were found to be different each other. MEFs readily digested the $A\alpha$ - and B$\beta$-chains of fibrinogen and more slowly the ${\gamma}$-chain. The action of the enzymes resulted in extensive hydrolysis of fibrinogen and fibrin, releasing a variety of fibrinopeptides. MEF-1 was inactivated by Cu$^{2+}$ and Zn$^{2+}$ and inhibited by PMSF and chymostatin. MEF-2 was inhibited by PMSF, TLCK. soybean trypsin inhibitor. MEF-3 was only inhibited by PMSF and chymostatin. Antiplasmin was not sensitive to MEF-1 but antithrombin III inhibited the enzymatic activity qf MEF-1. MEF-2 specifically bound to anti plasmin Among the chromogenic protease substrates, the most sensitive one to the hydrolysis of MEFs was benzoyl-Phe-Val-Arg-p-nitroanilide with maximal activity at pH 7.0 and 3$0^{\circ}C$. MEF-1 preferentially cleaved the oxidized B-chain of insulin between Leu15 and Tyr16. In contrast, MEF-2 specifically cleaved the peptide bond between Arg23 and Gly24. D-dimer concentrations increased on incubation of cross-linked fibrin with MEF-1, indicating the enzyme has a strong fibrinolytic activity.ity.

  • PDF

Effect of Chungsimyeonjaeum on myocardiac cell injury in mouse myoblast $C_2Cl_{12}$ cells (청심연자음(淸心蓮子飮)이 Mouse유래 $C_2Cl_{12}$세포주에서 심근세포 손상의 보호 효과)

  • Lee, Sang-Heon;Park, Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.27 no.3 s.67
    • /
    • pp.26-37
    • /
    • 2006
  • Determination and differentiation of cells in the skeletal muscle lineage is positively regulated by cell-cell contact. Differentiation proteins proposed to mediate this effect include both classical MyoD and MEF members; potential interactions between the promyogenic activities of these classes of protein, however, are unknown. We show here that MyoD and MEF, two promyogenic family members that relate to each other in a cis fashion, form interactions with MyoD and MEF. These proteins contain myosin-heavy chainsand are enriched at sites of cell-cell contact between myoblasts. Therefore, in differentiation of MyoD and MEF from Chungsimyeonjaeum interact dependently, suggesting that the interactions occur in a cis fashion; consistent with this conclusion, MyoD-mediated differentiation is required for myoblasts to occur by Chungsimyeonjaeum. Inhibition in myoblasts of a MyoD by Staurosporine in its ability to associate with MEF interferes with differentiation as assessed by morphological and transcription levels, suggesting that this interaction is functionally important in myogenesis. Also, some of the differentiation-mediated proteins that are required for myogenesis seem to be based on interdependent activities of the promyogenic classical smad-subfamily.

  • PDF

Influence of Neuromuscular Electrical Stimulation on MEF2C and VEGF Expression of Neonatal Rat Skeletal Muscle During Suspension Unloading (신경근전기자극이 체중 부하를 제거한 신생 흰쥐 골격근 조직의 MEF2C 및 VEGF 발현에 미치는 영향)

  • Koo, Hyun-Mo;Lee, Sun-Min
    • Physical Therapy Korea
    • /
    • v.14 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • The aim of this study was to identify the effect of suspension unloading (SU) and electrical stimulation upon the development of neonatal muscular system. For this study, the neonatal rats were randomly divided into three groups: a control group, an experimental group I, and an experimental group II. The SU for experimental group I and II was applied from postnatal day (PD) 5 to PD 30. The electrical stimulation for soleus muscle of experimental group IIwas applied from PD 16 to PD 30 using neuromuscular electrical stimulation (NMES), which gave isometric contraction with 10 pps for 30 minutes twice a day. In order to observe the effect of SU and ES, this study observed myocyte enhancer factor 2C (MEF2C) and vascular endothelial growth factor (VEGF) immunoreactivity in the soleus muscles at PD 15 and PD 30. In addition, the motor behavior test was performed through footprint analysis at PD 30. The following is the result. At PD 15, the soleus muscles of experimental group Iand II had significantly lower MEF2C, VEGF immunoreactivity than the control group. It proved that microgravity conditions restricted the development of the skeletal muscle cells at PD 15. At PD 30, soleus muscles of the control group and experimental group II had significantly higher MEF2C, VEGF, immunoreactivity than experimental group I. It proved that the NMES facilitated the development of the skeletal muscle cells. At PD 30, it showed that SU caused the decrease in stride length of parameter of gait analysis and an increase in toe-out angle, and that the NMES decreased these variations. These results suggest that weight bearing during neonatal developmental period is essential for muscular development. They also reveal that NMES can encourage the development of muscular systems by fully supplementing the effect of weight bearing, which is an essential factor in the neonatal developmental process.

  • PDF

Effect of Chungsimyeonjatang on Myocardiac Cell Injury in Mouse Myoblast $C_2C_{12}$ Cells (Mouse 유래 $C_2C_{12}$세포주에서 청심연자탕(淸心蓮子湯)의 심근세포 손상 억제 효과)

  • Yoon, Hyeon-Deok;Shin, Oh-Chul;Shin, Yoo-Jeong;Kim, Seung-Mo;Park, Chi-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.333-345
    • /
    • 2007
  • Determination and differentiation of cells in the skeletal muscle lineage is positively regulated by cell-cell contact. differentiation proteins proposed to mediate this effect include both classical MyoD and MEF members : potential interactions between the promyogenic activities of these classes of protein, however, are unknown. We show here that MyoD and MEF, two promyogenic family members that determine to each other in a cis fashion, form ineraction with MyoD- and MEF. These proteins contain myosin heavy chains and are enriched at sites of cell-cell contact between myoblasts, Therefore, In differentiation of MyoD MEF from CST (Chungsimyeonjatang) interact dependently, suggesting that the interactions occur in a cis fashio : consistent with this conclusion, MyoD-mediated differentiation is required for myoblast to occur by CST. Inhibition in myoblasts of a MyoD by STP in its ability to associate with MEF interferes with differentiation as assessed by morphological and transcription level, suggesting that this interaction is functionally important in myogenesis. Also, some of the differentiation-mediated proteins that are required for myogenesis seem to be based on interdependent activities of promyogenic classical SMAD-subfamilly.

  • PDF

On the Composition of Morchella esculenta Fruit Body (곰보버섯의 성분에 관한 연구)

  • 차월석;이희덕;김종수
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.82-90
    • /
    • 2004
  • This study was carried out to analysis the composition of fruit body of Morchella esculenta (MEF) to determine the possibility of medical and edible use. The nutritional compositions of MEF were as follows ; The contnt (g%) of crude fat, carbohydrate, crude protein were 3.8, 43.5 and 29.7, respectively. Potassium concentration in MEF was high up to 3558.0 mg% and Ca, Mg, Fe, Na and Zn were followed. There were 23 amino acids in MEF The content of glutamic acid was high up to 1433.0 mg% and leucine, alanine, arginine valine and theronine were followed. Since MEF contains 25 free amino acids, it will be a favorable food stuff. The content of Vitamin A, Vitamin $B_1$, , Vitamin$B_2$, Vitamin $B_6$, Vitamin C, Vitamin $BD_3$, Vitamin E and Vitamin $K_1$, were 2.23 $\mug%$, 0.13 mg%, 0.07 mg%, 0.27 mg%, 0.17 mg%, 52.27 $\mug%$, 5.26 mg% and 3.23 $\mug%$, respectively. MEF will have a good anti-aging effect due to content of Vitamin C and Vitamin E.

A STUDY OF APIN-PROTEIN INTERACTIONS USING PROTEIN MICROARRAY (Protein microarray를 이용한 APin-단백질의 상호작용에 관한 연구)

  • Park, Joo-Cheol;Park, Sun-Hwa;Kim, Heung-Joong;Park, Jong-Tae;Youn, Seong-Ho;Kim, Ji-Woong;Lee, Tae-Yeon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.459-468
    • /
    • 2007
  • Protein microarray or protein chips is potentially powerful tools for analysis of protein-protein interactions. APin cDNA was previously identified and cloned from a rat odontoblast cDNA library. The purpose of this study was to investigate the APin-protein interactions during ameloblast differentiation. Protein microarray was carried with recombinant APin protein and MEF2, Aurora kinase A, BMPR-IB and EF-hand calcium binding protein were selected among 74 interacting proteins. Immortalized ameloblast cells (ALCs) were transfected with pCMV-APin construct and U6-APin siRNA construct. After transfection, the expression of the mRNAs for four proteins selected by protein micoarrays were assessed by RT-PCR. The results were as follows: 1. APin expression was increased and decreased markedly after its over-expression and inactivation, respectively. 2. Over-expression of the APin in the ALCs markedly down-regulated the expression of MEF2 and Aurora kinase A, whereas their expression remained unchanged by its inactivation. 3. Expression of BMPR-IB and EF-hand calcium binding protein were markedly increased by the over-expression of the APin in the ALCs, whereas expression of BMPR-IB remained unchanged and expression of EF-hand calcium binding protein was markedly decreased by its inactivation. These results suggest that APin plays an important role in ameloblast differentiation and mineralization by regulating the expression of MEF2, Aurora kinase A, BMPR-IB and EF-hand calcium binding protein.

Cancer Prevention Effect of Epigallocatechin-3-gallate through Regulate in C-terminal Src Kinase (CSK) Signaling Pathway (녹차성분 EGCG의 CSK 단백질 조절을 통한 암예방 효과)

  • Kim, Dae Yong;Choi, Bu Young
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • A great interest is emerging about green tea as a tool against human cancer proliferation or inflammation, as pointed out by recent reports describing the inhibitory action of epigallocatechin gallate (EGCG) on angiogenesis, urokinase, metalloproteinases, and induction of inducible nitric oxide synthase. We proposed that EGCG may regulate a multi target signaling having wider spectra of action than those actions of single enzymes. CSK (c-terminal Src kinase) protein is a non-receptor tyrosine kinase involved in the cross-talk and mediation of many signaling pathways that promote cell proliferation, adhesion, invasion, migration, and tumorigenesis. Based on the knowledge that CSK activation is important for cancer proliferation we hypothesized that CSK could be a target of EGCG. Here we showed that EGCG effectively suppressed the growth of CSK MEF cell when compare with CSK knockout MEF cell growth. These results indicate that EGCG could be used as a chemoprevention to modulate CSK signal pathway in inflammatory processes and tumor formation.

Neuroprotective Effects of Carpinus tschonoskii MAX on 6-Hydroxydopamine-Induced Death of PC12 Cells

  • Kim, Min-Kyoung;Kim, Sang-Cheol;Kang, Jung-Il;Boo, Hye-Jin;Hyun, Jin-Won;Koh, Young-Sang;Park, Deok-Bae;Yoo, Eun-Sook;Kang, Ji-Hoon;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.454-462
    • /
    • 2010
  • The present study investigated the neuroprotective effect of Carpinus tschonoskii MAX and its intracellular protective mechanism on 6-hydroxydopamine (6-OHDA)-induced oxidative damage in PC12 cells. We found that pretreatment of PC12 cells with C. tschonoskii extract significantly inhibited the cell death induced by 6-OHDA in a dose dependent manner. C. tschonoskii extract decreased 6-OHDA-induced apoptotic events such as chromatin condensation, DNA fragmentation, the decrease of Bcl-2/Bax ratio, caspase-3 activation and PARP cleavage. C. tschonoskii extract also reduced generation of 6-OHDA-induced reactive oxygen species and nitric oxide. Furthermore, C. tschonoskii extract up-regulated the myocyte enhancer factor 2 D (MEF2D), a critical transcription factor for neuronal survival, and Akt activity, whereas it inhibited the activity of ERK1/2 and JNK. The results suggest that C. tschonoskii extract decreases 6-OHDA-induced oxidative stress and could prevent PC12 cell apoptosis induced by 6-OHDA via the up-regulation of MEF2D and Akt activity, and thus may have application in developing therapeutic agents for Parkinson's disease.

Effect of the Isolation Method of Mouse Inner Cell Mass, Types of Feeder Cells and Treatment Time of Mitomycin C on the Formation Rate of ICM Colony (생쥐 내세포괴의 분리방법과 지지세포의 종류와 Mitomycin C 처리 시간이 내세포괴 Colony 형성률에 미치는 영향)

  • Jang, Ho-Jin;Ko, Kyung-Rae;Kim, Mi-Kyung;Na, Yong-Jin;Lee, Kyu-Sup
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.4
    • /
    • pp.265-272
    • /
    • 2006
  • Objective: This study was carried out to evaluate the effect of the isolation methods of inner cell mass from mouse blastocyst, types of feeder cells and treatment time of mitomycin C on the formation rate of ICM colony. Methods: The inner cells were isolated by conventional immunosurgery, partial trophoblast dissection with syringe needles and whole blastocyst co-culture method. Commercially available STO and primary cultured mouse embryonic fibroblast (pMEF) feeder cells were used, and mitomycin C was treated for 1, 2 or 3 hours, respectively. The formation rate of ICM colony was observed after isolation of ICM and culture of ICM on the feeder cells for 7 days. Result: The ICM colony formation rate on STO were significantly higher in partial trophoblast dissection group (58%) than that in immunosurgery (12%) or whole blastocyst culture (16%) group (p<0.05). The formation rate on pMEF feeder layer was higher in partial trophoblast dissection (88%) and whole blastocyst culture (82%) group than that in immunosurgery (16%) group (p<0.05). When mitomycin C treated to pMEF for 2 hours, the formation rate of 88% was significantly higher than those of other conditions. Conclusion: Above results showed that the efficient isolation method of ICM from blastocyst was the partial trophoblast dissection and the appropriate treatment time of mitomycin C was 2 hours. However, the subculture of ICM colony and characterization of stem cells should be carried out to confirm the efficacy of the partial trophoblast dissection method.