• Title/Summary/Keyword: Medium-speed diesel engine

Search Result 71, Processing Time 0.034 seconds

Improving the performance of a Medium Speed Diesel Engine Using Miller Cycle (Miller 사이클을 이용한 중형 디젤 기관 성능 개선)

  • 김동훈;김기두;하지수;김호익;김주태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.248-255
    • /
    • 2002
  • Miller cycle was studied and analyzed by engine performance simulation to achieve very low fuel consumption and to meet the IMO NOx regulation on a medium speed diesel engine. Based on the performance simulation results the intake valve closing time for HYUNDAI HiMSEN 6H21/32 engine was set at 0deg.ABDC(After Bottom Dead Center). Also, the simulation results indicated that significant NOx reduction could be achieved with low reduction of fuel consumption. The performance simulation investigated the effect of compression ratio and turbocharger on fuel consumption and NOx concentration in combination with Miller cycle. The results indicated a significant reduction of fuel consumption with keeping NOx concentration. The results of performance simulation were compared with measured data to verify simulation results. The comparison showed the maximum error was 2.34% in exhaust temperature. Also, the experimental result showed that improvement in BSFC(Brake Specific Fuel Consumption) was 5.8g/kwh with keeping NOx level similar to simulation result.

Performance Simulation for the Variation of Fuel Injection Nozzle Configurations in Medium Speed Diesel Engine (중형 디젤 엔진의 연료분사노즐 형상에 따른 성능 해석 연구)

  • Kim, Ki-Doo;Youn, Wook-Hyun;Kim, Byong-Seok;Ha, Ji-Soo;Ahn, Kwang-Hean;Kim, Ju-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.662-668
    • /
    • 2006
  • The effects of fuel injection nozzle hole on the NOx emission and fuel oil consumption of medium speed diesel engine HYUNDAI HiMSEN 6H21/32 engine are investigated by engine performance simulation. The results of performance simulation are verified by experimental results of NOx omission fuel oil consumption, cylinder pressure, and heat release rate according to the variation of the number of fuel injection nozzle hole and engine load. The performance simulations are also carried out to optimize the fuel injection nozzle of 6H21/32 engine in respect to the NOx emission and fuel oil consumption. The engine performance measurements are performed to verify the results of performance simulation and to investigate the effects of fuel injection nozzle on engine performance. The results of measurement indicate that significant NOx reduction can be achieved with minimum deterioration in fuel oil consumption by optimizing the geometry of fuel injection nozzle on 6H21/32 engine.

Aerodynamic Three Dimensional Geometry and Combustor Design for the Compressor of the Medium Speed Diesel Engine Turbocharger (중형 엔진 터보차져의 원심압축기에 관한 공력학적 3차원 형상 및 구동용 연소기 설계)

  • Ryu, Seung-Hyup;Ghal, Sang-Hak;Ha, Ji-Soo;Kim, Seung-Kuk;Kim, Hong-Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.30-38
    • /
    • 2006
  • An aerodynamic design for centrifugal compressor which was applied to medium speed diesel engine has been done. First of all, exact compressor specifications must be defined by accurate engine system matching. This matching program has been developed. Using the meanline prediction method, geometric design and performance curves for compressor were established and verified by comparing three dimensional viscous CFD results. The deviation at the design point was about 2.3%. Combustor has been designed and manufactured for the performance test of medium speed diesel engine turbocharger. Fuel nozzle of combustor was designed and its characteristics was analyzed by PIV and PDPA test equipment. Through these results, spray characteristics were studied and flow coefficient equation was deduced.

EXPANSION OF HYUNDAI'S MEDIUM SPEED DIESEL ENGINE FAMILY, HiMSEN (현대중공업 중속디젤엔진 힘센엔진 패밀리의 신모델 추가 개발)

  • Kim, J.S.;Kim, J.T.;Kwon, O.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.92-100
    • /
    • 2005
  • Since HiMSEN H21/32, a new medium speed diesel engine of Hyundai's own design, was introduced in 2001, Hyundai has added new models of H25/33 and H17/28 into HiMSEN engine family. These two new engines take after faithfully to the original HiMSEN concept of a PRACTICAL engine by Hi-Touch and Hi-Tech. The prototype of H25/33 was developed jointly with Rolls Royce Bergen originally and also introduced in 2001. But most of the engine design have been changed by Hyundai for the commercial versions to be a member of HiMSEN family, which has little interchangeability with the prototype. H17/28 is now under development as the smallest size of the family. This new engine also has the longest stroke of a class engine, which has been proven as the best basis for future environmental challenge. The higher compression ratio of 17 and optimized Miller Timing with Simplified pulse turbocharging system applied all HiMSEN engines as which showed the most practical solution against current heavy fuel combustion issues for the time being before introducing digital control system. This paper describes the design and development of these new HiMSEN engines and also reviews the service experiences of H21/32 and H25/33, which launched successfully.

  • PDF

OXIDATION CHARACTERISTICS OF PARTICULATE MATTER ON DIESEL WARM-UP CATALYTIC CONVERTER

  • Choi, B.C.;Yoon, Y.B.;Kang, H.Y.;Lim, M.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.527-534
    • /
    • 2006
  • Modern passenger cars with diesel engines are equipped with DOC(diesel oxidation catalyst) for the purpose of reducing HC and CO in the exhaust stream. Cold start exhaust emissions pose troubles here as on gasoline engine vehicles. As a result, some of the diesel passenger cars roll off todays the assembly lines with WCC(warm-up catalytic converter). Oxidation characteristics of the particulates in WCC is analyzed in this study by EEPS(engine exhaust particulate size spectrometer). The maximum number of PM is found to come out of WCC in sizes near 10nm when an HSDI diesel engine is operated under the conditions of high speed and medium to heavy load. When the temperature of the WCC exceeds $300^{\circ}C$, the number of PM smaller than 30 nm in diameter sharply increases upon passing through the WCC. Total mass of emitted PM gets reduced downstream of the WCC under low speed and light load conditions due to adsorption of PM onto the catalyst. Under conditions of high speed and medium to heavy load, the relatively large PM shrink or break into fine particles during oxidation process within the WCC, which results in more mass fraction of fine particles downstream of the WCC.

Study on Simulation of Fuel Injection Nozzle for Marine Medium Speed Diesel Engine (선박용 중속디젤엔진 연료분사노즐 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-47
    • /
    • 2013
  • This study was carried out to improve the design of fuel injection nozzle for marine medium speed diesel engine. For this purpose, fuel injection nozzle was modeled and simulated using CATIA V5R19 and FLUENT & MSC Nastran. Analyses of flow and heat transfer, respectively, were performed to find the optimal design of fuel injection nozzle. As the results, big pressure drop, which may lead to cavitation damage, was occurred at inlet of fuel injection hole with diameter 0.3mm. Furthermore, it was confirmed that the increase of mean temperature of fuel injection nozzle was almost a half in comparison with that of fuel injection nozzle tip.

A study on the speed control system of medium - small size diesel engine by $\mu$-synthesis ($\mu$-synthesis 기법에 의한 중.소형 디젤기관의 속도 제어계에 관한 연구)

  • 양주호;변정환;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.82-87
    • /
    • 1997
  • This paper presents a method about the modeling of the medium - small diesel engine for the speed control and designs the robust speed control system by the $\mu$-synthesis, which has good performance, in spite of the existence of model uncertainities and the external disturbance. We confirmed the validity of the proposed modeling method and the designed control system by $\mu$-synthesis through the experimental responses.

  • PDF

Smokeless Starting for 4 Cycle Medium Speed Diesel Engine (4행정 중속 디젤기관의 스모크리스 시동)

  • Jung, Suk-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.11-16
    • /
    • 2014
  • Although smoke emitted from ships is not included in IMO(International Maritime Organiztion) regulation yet, it is one of the substance what is polluting mainly the air. Especially, its concentration is very high when an engine is started and a load is rapidly changed. This is caused by unburned fuel what is injected more than necessary quantity after combustion period. It is possible to decrease smoke concentration emitted at starting engine by controlling fuel injection quantity, but it is concerned that time to rated speed must be spent. Then a governor what can reduce the smoke concentration without a loss of time to rated speed is needed. We adopted a electro-hydraulic governor what can control dual fuel start limit function and achieved very low level of smoke concentration without greater the loss of time to rated speed.

A Study on Vibration Reduction of Local Structure of Medium-speed Diesel Engine (중속 디젤엔진 국부 구조물의 진동저감 연구)

  • Jung, Kun-Hwa;Lee, Jun-Ho;Son, Jung-Ho;Ryoo, Young-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.257-261
    • /
    • 2011
  • The failures of local structure of marine medium-speed diesel engine occurred in durability test. The vibration response of the whole engine was in an acceptance level, but the local structures were broken. ODS test and vibration measurement were carried out in order to investigate the root cause of durability problem. These tests revealed that the root cause of failures was excessive vibration by $4.5^{th}$ resonance between engine body and local structure. The best solution to reduce the vibration response is to change the type of mount. After a rigid mount was replaced by a flexible mount, maximum vibration level dropped to 72%.

  • PDF

Certification of Noise in Medium Speed Diesel Engine Test Shop (중형 엔진 시운전장의 소음 원인 규명)

  • Cho, S.Y.;Oh, K.T.;Kim, H.W.;Ha, J.S.;Kim, K.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1693-1698
    • /
    • 2000
  • In operating test of medium speed diesel engine, the large noise over 110dBA would be occurred, and silencer should be needed to prevent the transmission of noise through exhaust duct. A near neighborhood of medium speed engine test shop, outbreak of low frequency noise was reported. From the result of noise measurement, it was found that the coupling of engine noise and air column between workshops was main cause of annoying low frequency noise. From this study, 3 ways of reformation methods were proposed; insertion of plenum chamber, placement of baffles, and alteration of direction of exhaust. As a result of these modification, low frequency noise was cancelled out.

  • PDF