• 제목/요약/키워드: Medium reactor

검색결과 209건 처리시간 0.026초

Optimization and Mathematical Modeling of the Transtubular Bioreactor for the Production of Monoclonal Antibodies from a Hybridoma Cell Line

  • Halberstadt, Craig R.;Palsson, Bernhanrd O.;Midgley, A.Rees;Curl, Rane L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권3호
    • /
    • pp.163-170
    • /
    • 2002
  • This report describes the use of a transtubular bioreactor to study the relative effects of diffusion versus perfusion of medium on antibody production by a hybridoma cell line. The study was performed with a high-density cell culture maintained in a serum-free, low-protein medium for 77 days. It was determined that the reactor possessed a macro-mixing pattern residence time distribution similar to a continuous stirred tank reactor (CSTR), However, due to the arrangement of the medium lines in the reactor, the flow patterns for nutrient distribution consist of largely independent medium path lengths ranging from short to long. When operated with cyclic, reversing, transtubular medium flow, some regions of the reactor (with short residence times) are more accessible to medium than others (with long residence times). From this standpoint, the reactor can be divided into three regions: a captive volume, which consists of medium primarily delivered via diffusion; a lapped volume, which provides nutrients through unilateral convection; and a swept volume, which operates through bilateral convection. The relative sizes of these three volumes were modified experimentally by changing the period over which the direction of medium flow was reversed from 15 min (larger captive volume) to 9 h (larger swept volume). The results suggest that antibody concentration increases as the size of the diffusion-limited (captive) volume is increased to a maximum at around 30 min with a sharp decrease thereafter. As reflected by changes in measured consumption of glucose and production of lactate, no significant difference in cellular metabolism occurred as the reactor was moved between these different states. These results indicate that the mode of operation of the transtubular bioreactor may influence antibody productivity under serum-free, low-protein conditions with minimal effects on cellular metabolism.

기포탑 및 막 재순환 생물반응기에서의 Saccharomycopsis lipolytica에 의한 구연산 생산 (Citric Acid Production by Succharomycopsis lipolytica in Air-lift and Membrane Recycle Bioreactors)

  • 조대철;정봉현;장호남
    • 한국미생물·생명공학회지
    • /
    • 제17권6호
    • /
    • pp.624-628
    • /
    • 1989
  • A study on the citric acid production using Saccharomycopsis lipolytica (NRRL Y7576) was carried out in shake-flasks, air-lift and membrane recycle bioreactors. The cells entrapped in Ca-alginate beads were used in shake-flasks and air-lift reactor. Repeated batch fermentation in shake-flasks was successfully performed for 34 days and resulted in a yield of 54%. Increased yield (63%) was obtained in the air-lift reactor operation using nitrogen deficient medium (NDM). In the membrane recycle bioreactor operation, the maximal dry cell mass concentration was 39 g/1 at a dilution rate of 0.02 h$^{-1}$ and the yield with NDM was higher than that with growth medium. In addition, the yield and volumetric productivity with pure oxygen supply were greatly improved compared with those with air supply.

  • PDF

Nano Yttrium-90 and Rhenium-188 production through medium medical cyclotron and research reactor for therapeutic usages: A Simulation study

  • Abdollah Khorshidi
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1871-1877
    • /
    • 2023
  • The main goal of the coordinated project development of therapeutic radiopharmaceuticals of Y-90 and Re-188 is to exploit advancements in radionuclide production technology. Here, direct and indirect production methods with medium reactor and cyclotron are compared to evaluate derived neutron flux and production yield. First, nano-sized 186W and 89Y specimens are suspended in water in a quartz vial by FLUKA simulation. Then, the solution is irradiated for 4 days under 9E+14 n/cm2/s neutron flux of reactor. Also, a neutron activator including three layers-lead moderator, graphite reflector, and polyethylene absorbent- is simulated and tungsten target is irradiated by 60 MeV protons of cyclotron to generate induced neutrons for 188W and 90Sr production via neutron capture. As the neutron energy reduced, the flux gradually increased towards epithermal range to satisfy (n/2n,γ) reactions. The obtained specific activities at saturation were higher than the reported experimental values because the accumulated epithermal flux and nano-sized specimens influence the outcomes. The beta emitters, which are widely utilized in brachytherapy, appeal an alternative route to locally achieve a rational yield. Therefore, the proposed method via neutron activator may ascertain these broad requirements.

균체고정화 생물반응기에서 산소공급에 의한 에탄올 생산성 향상 (Enhancement of Ethanol Productivity by Air Supplement in Immobilized Cell Reactor System)

  • 조의철;김정회;김영준
    • 한국미생물·생명공학회지
    • /
    • 제17권2호
    • /
    • pp.165-169
    • /
    • 1989
  • 고생산성의 알콜 발효용 생물반응기를 개발하기 위하여 sodium alginate로 효모균체를 고정화시킨 후 충전탑 반응기를 제조하였다. 이 때 gel속에 고정화되어 있는 세포에 산소를 공급하기 위하여 배지를 공기로 포화시킨 후 공급하였다. 그 결과 9% 포도당을 함유한 배지를 사용하였을 경우 최대 알콜생산성은 35g/$\ell$-gel-hr에서 55g/$\ell$-gel-hr로 증가되었고 90%의 전환율을 얻는데 걸리는 시간도 40분에서 25분으로 감소되었다. 즉 고정화세포 충전탑 반응기에서도 배지에 어느 정도의 산소를 공급하면 세포활성의 증가로 발효속도가 현저히 촉진됨을 알 수 있었다.

  • PDF

Small Nuclear Units에 의한 분산전원 및 계통연계(2) (Small Nuclear Units and Distributed Resource interconnection(2))

  • 이상성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.420-422
    • /
    • 2005
  • This paper introduces a new paradigm for energy supply system in near future which produces electric and district heat cogeneration with dispersed power grid with small nuclear power units. Recently, in nuclear field, a lot of effort has been done in nuclear major countries to develop small and medium reactor for enhancement of nuclear peaceful use as like in district heating, electric power generation, seawater desalination or hydrogen generation.

  • PDF

당밀을 이용한 곤충병원성 곰팡이 Beauveria bassiana 726의 포자생산 (Spore Production of Entomopathogenic Fungus, Beauveria bassiana 726, Using Molasses)

  • 김병혁;강성우;윤철식;성재모;홍석인;김승욱
    • KSBB Journal
    • /
    • 제14권3호
    • /
    • pp.365-370
    • /
    • 1999
  • To optimize the culture conditions for Beauveria bassiana 726, the effects of culture medium, pH, and temperature on mycelium and spore production were investigated. The optimum temperature and pH for the cultivation of B. bassiana 726 were 28 $^{\circ}C$ and 5.0, respectively. The optimized medium was composed of 1.0~2.0% total sugar from molasses, 0.5% corn steep liquor and 0.05% KH$_2$PO$_4$. In the cultivation of B. bassiana 726 with the optimum medium, the specific growth rate and substrate utilization were well-fitted with the proposed kinetic model in the shake flask and stirred tank reactor. When the fed-batch cultivation using carbon suorce, nitrogen source, and mineral salt as a feeding medium was compared with batch cultivation in stirred tank reactor, mycelium (12.7 g/L) and spore production (5.4$\times$$10^8/mL$) were enhanced up to 110% and 85%, respectively.

  • PDF

AM600: A New Look at the Nuclear Steam Cycle

  • Field, Robert M.
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.621-631
    • /
    • 2017
  • Many developing countries considering the introduction of nuclear power find that large-scale reactor plants in the range of 1,000 MWe to 1,600 MWe are not grid appropriate for their current circumstance. By contrast, small modular reactors are generally too small to make significant contributions toward rapidly growing electricity demand and to date have not been demonstrated. This paper proposes a radically simplified re-design for the nuclear steam cycle for a medium-sized reactor plant in the range of 600 MWe. Historically, balance of plant designs for units of this size have emphasized reliability and efficiency. It will be demonstrated here that advances over the past 50 years in component design, materials, and fabrication techniques allow both of these goals to be met with a less complex design. A disciplined approach to reduce component count will result in substantial benefits in the life cycle cost of the units. Specifically, fabrication, transportation, construction, operations, and maintenance costs and expenses can all see significant reductions. In addition, the design described here can also be expected to significantly reduce both construction duration and operational requirements for maintenance and inspections.

하수슬러지를 이용한 Bio-block의 비점오염물질 제거 가능성 평가 (Evaluation of the Feasibility of Eliminating Non-point Source Pollution Using Waste Sewage Sludge Bio-blocks)

  • 한상무;김도형;정병곤
    • 한국물환경학회지
    • /
    • 제37권5호
    • /
    • pp.363-368
    • /
    • 2021
  • On the assessment results of the non-point source pollutant removability of bio-block using waste sewage sludge, at the reactor's initial operation stage, the removal efficiency of COD was slightly unstable. However, after the reactor was stabilized, the COD removal efficiency was higher in the reactor filled with bio-blocks compared to the reactor filled with broken stones. In terms of nitrogen and phosphorus, their removal efficiency was unstable at the initial stage of the reactor operation. This phenomenon was investigated through the bio-block elution experiments. Results indicated that nitrogen and phosphorus were eluted from the bio-blocks affecting their removal at the initial operation. Furthermore, based on elution tests conducted after the dry ashing of the waste sewage sludge, part of the nitrogen and phosphorus was eluted similar to the bio-block elution test results, although considerable amounts of nitrogen and phosphorus were reduced compared to the sludge cake. Prior to the use of the waste sewage sludge bio-blocks as a filter medium to remove non-point source pollutants, a stabilization period of 10 days was required. After the stabilization process, results showed similar characteristics as general aggregates. Moreover, to use the bio-block as a filter medium for the non-point pollutant removal, the filling ratio of 75% was the most suitable as it resulted in the highest nitrogen removal efficiency after the stabilization. The results of this study suggested that waste sewage sludge can be suitably recycled as a mixed raw material for the bio-blocks, with satisfactory application as a filter medium in artificial wetlands, stormwater runoff problems, stream water pollutants to eliminate non-point source pollutants.

Small Nuclear Units에 의한 분산전원으로서의 전망(1) (Small Nuclear Units and Distributed Resource Prospects(1))

  • 이상성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.223-225
    • /
    • 2005
  • This paper will be introduce a new paradigm and prospects for energy supply system in near future which produces electric and district heat cogeneration with dispersed power grid with small nuclear power units. Recently, in nuclear field, a lot of effort has been done in nuclear major countries to develop small and medium reactor for enhancement of nuclear peaceful use as like in district heating, electric power generation, seawater desalination or hydrogen generation. This paper presents a new way and prospects for power source in distribution system by using the distributed & remote cogeneration system using small reactor.

  • PDF