• Title/Summary/Keyword: Medium reactor

Search Result 208, Processing Time 0.031 seconds

Optimization and Mathematical Modeling of the Transtubular Bioreactor for the Production of Monoclonal Antibodies from a Hybridoma Cell Line

  • Halberstadt, Craig R.;Palsson, Bernhanrd O.;Midgley, A.Rees;Curl, Rane L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 2002
  • This report describes the use of a transtubular bioreactor to study the relative effects of diffusion versus perfusion of medium on antibody production by a hybridoma cell line. The study was performed with a high-density cell culture maintained in a serum-free, low-protein medium for 77 days. It was determined that the reactor possessed a macro-mixing pattern residence time distribution similar to a continuous stirred tank reactor (CSTR), However, due to the arrangement of the medium lines in the reactor, the flow patterns for nutrient distribution consist of largely independent medium path lengths ranging from short to long. When operated with cyclic, reversing, transtubular medium flow, some regions of the reactor (with short residence times) are more accessible to medium than others (with long residence times). From this standpoint, the reactor can be divided into three regions: a captive volume, which consists of medium primarily delivered via diffusion; a lapped volume, which provides nutrients through unilateral convection; and a swept volume, which operates through bilateral convection. The relative sizes of these three volumes were modified experimentally by changing the period over which the direction of medium flow was reversed from 15 min (larger captive volume) to 9 h (larger swept volume). The results suggest that antibody concentration increases as the size of the diffusion-limited (captive) volume is increased to a maximum at around 30 min with a sharp decrease thereafter. As reflected by changes in measured consumption of glucose and production of lactate, no significant difference in cellular metabolism occurred as the reactor was moved between these different states. These results indicate that the mode of operation of the transtubular bioreactor may influence antibody productivity under serum-free, low-protein conditions with minimal effects on cellular metabolism.

Citric Acid Production by Succharomycopsis lipolytica in Air-lift and Membrane Recycle Bioreactors (기포탑 및 막 재순환 생물반응기에서의 Saccharomycopsis lipolytica에 의한 구연산 생산)

  • 조대철;정봉현;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.624-628
    • /
    • 1989
  • A study on the citric acid production using Saccharomycopsis lipolytica (NRRL Y7576) was carried out in shake-flasks, air-lift and membrane recycle bioreactors. The cells entrapped in Ca-alginate beads were used in shake-flasks and air-lift reactor. Repeated batch fermentation in shake-flasks was successfully performed for 34 days and resulted in a yield of 54%. Increased yield (63%) was obtained in the air-lift reactor operation using nitrogen deficient medium (NDM). In the membrane recycle bioreactor operation, the maximal dry cell mass concentration was 39 g/1 at a dilution rate of 0.02 h$^{-1}$ and the yield with NDM was higher than that with growth medium. In addition, the yield and volumetric productivity with pure oxygen supply were greatly improved compared with those with air supply.

  • PDF

Nano Yttrium-90 and Rhenium-188 production through medium medical cyclotron and research reactor for therapeutic usages: A Simulation study

  • Abdollah Khorshidi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1871-1877
    • /
    • 2023
  • The main goal of the coordinated project development of therapeutic radiopharmaceuticals of Y-90 and Re-188 is to exploit advancements in radionuclide production technology. Here, direct and indirect production methods with medium reactor and cyclotron are compared to evaluate derived neutron flux and production yield. First, nano-sized 186W and 89Y specimens are suspended in water in a quartz vial by FLUKA simulation. Then, the solution is irradiated for 4 days under 9E+14 n/cm2/s neutron flux of reactor. Also, a neutron activator including three layers-lead moderator, graphite reflector, and polyethylene absorbent- is simulated and tungsten target is irradiated by 60 MeV protons of cyclotron to generate induced neutrons for 188W and 90Sr production via neutron capture. As the neutron energy reduced, the flux gradually increased towards epithermal range to satisfy (n/2n,γ) reactions. The obtained specific activities at saturation were higher than the reported experimental values because the accumulated epithermal flux and nano-sized specimens influence the outcomes. The beta emitters, which are widely utilized in brachytherapy, appeal an alternative route to locally achieve a rational yield. Therefore, the proposed method via neutron activator may ascertain these broad requirements.

Enhancement of Ethanol Productivity by Air Supplement in Immobilized Cell Reactor System (균체고정화 생물반응기에서 산소공급에 의한 에탄올 생산성 향상)

  • 조의철;김정회;김영준
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.165-169
    • /
    • 1989
  • To achieve higher ethanol productivity in the fermentation system, a continuous ethanol production has been investigated with the air-supplement in a packed-bed immobilized cell reactor system. Yeast cells were immobilized using sodium alginate gel. The results showed that, when the feed medium was saturated with oxygen through aeration into the medium reservoir, the maximum ethanol productivity of the reactor was enhanced from 35 g/$\ell$-gel-hr to 55 g/$\ell$-gel-hr at the residence time of 10-20 min. and the residence time for the 90% conversion of substrate to ethanol was reduced from 40 min. to 25 min. In case of 18% glucose medium, the maximum productivity was increased from 35 g/$\ell$-gel-hr to 45 g/$\ell$-gel-hr and time required for 90% conversion was from 90 min to 70 min. This behavior of air-supplemented reactor system might be due to the fact that both growth and viable fraction of yeast within the Eel were increased during reactor operation.

  • PDF

Small Nuclear Units and Distributed Resource interconnection(2) (Small Nuclear Units에 의한 분산전원 및 계통연계(2))

  • Lee, Sang-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.420-422
    • /
    • 2005
  • This paper introduces a new paradigm for energy supply system in near future which produces electric and district heat cogeneration with dispersed power grid with small nuclear power units. Recently, in nuclear field, a lot of effort has been done in nuclear major countries to develop small and medium reactor for enhancement of nuclear peaceful use as like in district heating, electric power generation, seawater desalination or hydrogen generation.

  • PDF

Spore Production of Entomopathogenic Fungus, Beauveria bassiana 726, Using Molasses (당밀을 이용한 곤충병원성 곰팡이 Beauveria bassiana 726의 포자생산)

  • 김병혁;강성우;윤철식;성재모;홍석인;김승욱
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.365-370
    • /
    • 1999
  • To optimize the culture conditions for Beauveria bassiana 726, the effects of culture medium, pH, and temperature on mycelium and spore production were investigated. The optimum temperature and pH for the cultivation of B. bassiana 726 were 28 $^{\circ}C$ and 5.0, respectively. The optimized medium was composed of 1.0~2.0% total sugar from molasses, 0.5% corn steep liquor and 0.05% KH$_2$PO$_4$. In the cultivation of B. bassiana 726 with the optimum medium, the specific growth rate and substrate utilization were well-fitted with the proposed kinetic model in the shake flask and stirred tank reactor. When the fed-batch cultivation using carbon suorce, nitrogen source, and mineral salt as a feeding medium was compared with batch cultivation in stirred tank reactor, mycelium (12.7 g/L) and spore production (5.4$\times$$10^8/mL$) were enhanced up to 110% and 85%, respectively.

  • PDF

AM600: A New Look at the Nuclear Steam Cycle

  • Field, Robert M.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.621-631
    • /
    • 2017
  • Many developing countries considering the introduction of nuclear power find that large-scale reactor plants in the range of 1,000 MWe to 1,600 MWe are not grid appropriate for their current circumstance. By contrast, small modular reactors are generally too small to make significant contributions toward rapidly growing electricity demand and to date have not been demonstrated. This paper proposes a radically simplified re-design for the nuclear steam cycle for a medium-sized reactor plant in the range of 600 MWe. Historically, balance of plant designs for units of this size have emphasized reliability and efficiency. It will be demonstrated here that advances over the past 50 years in component design, materials, and fabrication techniques allow both of these goals to be met with a less complex design. A disciplined approach to reduce component count will result in substantial benefits in the life cycle cost of the units. Specifically, fabrication, transportation, construction, operations, and maintenance costs and expenses can all see significant reductions. In addition, the design described here can also be expected to significantly reduce both construction duration and operational requirements for maintenance and inspections.

Evaluation of the Feasibility of Eliminating Non-point Source Pollution Using Waste Sewage Sludge Bio-blocks (하수슬러지를 이용한 Bio-block의 비점오염물질 제거 가능성 평가)

  • Han, Sang Moo;Kim, Do Hyeong;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.363-368
    • /
    • 2021
  • On the assessment results of the non-point source pollutant removability of bio-block using waste sewage sludge, at the reactor's initial operation stage, the removal efficiency of COD was slightly unstable. However, after the reactor was stabilized, the COD removal efficiency was higher in the reactor filled with bio-blocks compared to the reactor filled with broken stones. In terms of nitrogen and phosphorus, their removal efficiency was unstable at the initial stage of the reactor operation. This phenomenon was investigated through the bio-block elution experiments. Results indicated that nitrogen and phosphorus were eluted from the bio-blocks affecting their removal at the initial operation. Furthermore, based on elution tests conducted after the dry ashing of the waste sewage sludge, part of the nitrogen and phosphorus was eluted similar to the bio-block elution test results, although considerable amounts of nitrogen and phosphorus were reduced compared to the sludge cake. Prior to the use of the waste sewage sludge bio-blocks as a filter medium to remove non-point source pollutants, a stabilization period of 10 days was required. After the stabilization process, results showed similar characteristics as general aggregates. Moreover, to use the bio-block as a filter medium for the non-point pollutant removal, the filling ratio of 75% was the most suitable as it resulted in the highest nitrogen removal efficiency after the stabilization. The results of this study suggested that waste sewage sludge can be suitably recycled as a mixed raw material for the bio-blocks, with satisfactory application as a filter medium in artificial wetlands, stormwater runoff problems, stream water pollutants to eliminate non-point source pollutants.

Small Nuclear Units and Distributed Resource Prospects(1) (Small Nuclear Units에 의한 분산전원으로서의 전망(1))

  • Lee, Sang-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.223-225
    • /
    • 2005
  • This paper will be introduce a new paradigm and prospects for energy supply system in near future which produces electric and district heat cogeneration with dispersed power grid with small nuclear power units. Recently, in nuclear field, a lot of effort has been done in nuclear major countries to develop small and medium reactor for enhancement of nuclear peaceful use as like in district heating, electric power generation, seawater desalination or hydrogen generation. This paper presents a new way and prospects for power source in distribution system by using the distributed & remote cogeneration system using small reactor.

  • PDF