• Title/Summary/Keyword: Medium access

Search Result 723, Processing Time 0.023 seconds

Contention-Free Access Protocol Based Energy-Efficient Transmission for Wireless PANs (비경쟁 접근 프로토콜 기반 WPAN을 위한 에너지 효율적인 전송기법)

  • Joo, Yang-Ick;Lee, Yeon-Woo;Jung, Min-A;Choi, Myeong-Soo;Kim, Seo-Gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.450-457
    • /
    • 2008
  • One of very essential techniques for enlarging lifetime of energy-constrained wireless personal area network (WPAN) devices is energy-efficient transmission technique. If the WPAN is operated based on a TDMA protocol, the satisfaction of QoS requirements at each allocated time slot is another important factor to be considered. We therefore propose an energy-efficient transmission scheme for WPANs operating with a contention-free medium access protocol such as TDMA, as well as satisfying QoS requirement. The proposed algorithm determines the optimum combination of transmit power, physical data rate and fragment size required to simultaneously minimize the energy consumption and satisfy the required QoS in each assigned time duration, considering all the possible energy-minimization related parameters. The proposed algorithm demonstrated the improved performance results in terms of throughput and energy consumption via computer simulation.

The Study of the electronic Access Service Model for Supply Chain (공급망을 위한 전자적 접근 서비스 모델 연구)

  • Ahn, Kyeongrim;Lee, Suyoun
    • Convergence Security Journal
    • /
    • v.14 no.4
    • /
    • pp.95-100
    • /
    • 2014
  • The trend of business work that is related to supply chain changed into e-business using the electronic document However, the small and medium enterprise organizations still use huge volume of paper document, especially in private sector. Recently, the need for eco-friendly and low cost logistics becomes increasing. For this, it has expanded to exchange or to use e-document rather than the paper or manual processing in supply chain business. Therefore, this paper proposed the electronic access system for supply chain by business process modeling. If it is using the proposed system, it can be saving the exchanged or the scanned document to system, and user can utilize that document on just accessing system whenever they need the document. We believe it might reduce the burden of each organization because they don't need to save large volume data to their system or place. Furthermore, the benefits will effect across the national as well as global.

A WDM Based Multichannel All-Optical Ring Network (파장 분할 다중화에 의한 다 채널 광 링 통신망의 성능 분석)

  • 박병석;강철신;신종덕;정제명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.159-169
    • /
    • 1994
  • A multichannel optical slotted ring network is designed using a wavelength division multiplexing(WDM) technique and photonic packet switching devices. The electronics speed bottleneck is removed out of the ring, which allows utilization of the full bandwidth for the optical fiber transmission medium. The ring channel adopts a slotted ring concept with a destination cell remove strategy for the eing access mechanism. The slot size in the ring is selected as the same as that of ATM based cell in order to be used as B-ISDN Access Networks. In this paper, we devised a mathematical method to measure the average transfer delay characteristics of the network. The analytical method turned out to yield accurate results over a broad range of parameters in comparison to simulation results. From the study, we observed the average transfer delay of the network as the network parameters vary.

  • PDF

Bandwidth Management of WiMAX Systems and Performance Modeling

  • Li, Yue;He, Jian-Hua;Xing, Weixi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.2
    • /
    • pp.63-81
    • /
    • 2008
  • WiMAX has been introduced as a competitive alternative for metropolitan broadband wireless access technologies. It is connection oriented and it can provide very high data rates, large service coverage, and flexible quality of services (QoS). Due to the large number of connections and flexible QoS supported by WiMAX, the uplink access in WiMAX networks is very challenging since the medium access control (MAC) protocol must efficiently manage the bandwidth and related channel allocations. In this paper, we propose and investigate a cost-effective WiMAX bandwidth management scheme, named the WiMAX partial sharing scheme (WPSS), in order to provide good QoS while achieving better bandwidth utilization and network throughput. The proposed bandwidth management scheme is compared with a simple but inefficient scheme, named the WiMAX complete sharing scheme (WCPS). A maximum entropy (ME) based analytical model (MEAM) is proposed for the performance evaluation of the two bandwidth management schemes. The reason for using MEAM for the performance evaluation is that MEAM can efficiently model a large-scale system in which the number of stations or connections is generally very high, while the traditional simulation and analytical (e.g., Markov models) approaches cannot perform well due to the high computation complexity. We model the bandwidth management scheme as a queuing network model (QNM) that consists of interacting multiclass queues for different service classes. Closed form expressions for the state and blocking probability distributions are derived for those schemes. Simulation results verify the MEAM numerical results and show that WPSS can significantly improve the network’s performance compared to WCPS.

Electronic Catalogue Based Cutting Parameter Selection (전자 카탈로그식 절삭변수 선정의 자동화)

  • 이성열
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.4
    • /
    • pp.1-5
    • /
    • 2001
  • This study presents an electronic catalogue based cutting parameter selection system using MS Access software. The proposed system has been designed to electronically select proper cutting conditions based on the stored data base. The existing approaches used in most small and medium sized companies are basically to use manufacturing engineer's experience or to find the recommended values from the manufacturing engineer handbook. These processes are often time consuming and inconsistent, especially when a new engineer is involved. Therefore, this study proposes a simple, yet quick and consistent electronic catalogue based cutting parameter selection method which uses MS Access in terms of programming and database implementation. Consequently, the proposed system could automatically generate the proper cutting conditions (feed, depth of cut, and cutting speed) as soon as the input data (proper information about the tool and work material) is given. Thanks to the simple structure and popularity of the MS Access, the engineer could be quickly accustomed to the system and easily modify/insert/delete the database if necessary.

  • PDF

QoS Aware Cross-layer MAC Protocol in wireless Sensor Networks (무선 센서 네트워크에서 QoS를 인지하는 Cross-layer MAC 프로토콜)

  • Park, Hyun-Joo;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2811-2817
    • /
    • 2010
  • In this paper we propose the QAC-MAC that supports Quality of Service(QoS) and saves energy resources of the sensor node, and hence prolonging the lifetime of the sensor network with multiple sink nodes. Generally, the nodes nearest to the sink node often experience heavy congestion since all data is forwarded toward the sink through those nodes. So this critically effects on the delay-constraint data traffics. QAC-MAC uses a hybrid mechanism that adapts scheduled scheme for medium access and scheduling and unscheduled scheme based on TDMA for no data collision transmission. Generally speaking, characteristics of the real-time traffic with higher priority tends to be bursty and has same destination. QAC-MAC adapts cross-layer concept to rearrange the data transmission order in each sensor node's queue, saves energy consumption by allowing few nodes in data transmission, and prolongs the network lifetime.

A Node-Grouping MAC Protocol in Delay-Tolerant Underwater Acoustic Sensor Networks (지연 허용적인 수중 센서 네트워크에서 노드 그룹핑을 이용한 매체 접속 제어 프로토콜)

  • Cheon, Jin-Yong;Son, Kweon;Jang, Youn-Seon;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1200-1209
    • /
    • 2011
  • In this paper, we propose a novel energy efficient MAC protocol which is based on orthogonal frequency division multiple access (OFDMA) and exploits the physical characteristic that propagation loss of acoustic wave depends on the distance. In the proposed scheme, sensor nodes are grouped according to the distance to sink node. Then, each group uses a different frequency band. The proposed scheme not only enables all sensor nodes to maintain the signal-to-noise ratio above a certain required level (Accepted Minimum SNR, AMS), but also reduces overall transmission power consumption. In addition, the dynamic sub-channel allocation is employed in order to improve data transmission rate. Simulations show that proposed MAC protocol has better performance in a delay-tolerant underwater acoustic sensor networks.

CSMA/CA based Transmission Scheme for QoS Assurance and Energy Efficiency of WPAN Systems (CSMA/CA 경쟁방식 기반의 WPAN 시스템을 위한 QoS 보장 및 에너지 효율적 전송방식)

  • Joo, Yang-Ick;Lee, Yeon-Woo;Jung, Min-A;Jang, Bong-Seog;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3B
    • /
    • pp.135-143
    • /
    • 2008
  • In this paper, we propose a QoS guaranteed and energy-efficient transmission scheme for Wireless Personal Area Networks (WPANs), which operate in conjunction with contention-based access protocols such as CSMA/CA. Energy consumption is one of the most important issues in WPAN systems, because WPAN devices are often required to operate under limited battery capacity. Furthermore, if the WPAN adopts a contention-based medium access protocol, the energy consumption problem becomes even more critical due to the collisions caused by independent channel access trials. Therefore, in this paper, we propose an algorithm that selects the optimum fragment size, modulation level, and transmission power, in order to minimize the energy consumption and guaranteethe QoS (Quality of Service) requirements, simultaneously. Our simulation results show that the proposed algorithm has better performance than the previous ones.

An IPv6 based Fast Handover Deployment Scheme for WiBro Networks (광대역 무선 인터넷 망에서 IPv6 기반의 고속 핸드오버 도입을 위한 방안)

  • Shim, Min-Sik;Kim, Hwa-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1101-1112
    • /
    • 2006
  • With the recent growth in demand for high-data rate multimedia services in the wireless environments, the Mobile Broadband Wireless Access (MBWA) technologies, such as WiBro (Wireless Broadband internet) system, are gradually coming into the spotlight. Unlike the conventional mobile communication networks based on cellular system, the WiBro system basically consists of IP based backbone networks that will be ultimately deployed by Ipv6 (IP version six) based backbone networks according to the All-IP trend for the network evolution. In such wireless mobile environments, it is needed to support the mobility management protocol on network layer as well as physical layer and Medium Access Control (MAC) layer in WiBro system. Accordingly, in this paper, we propose a fast handover scheme for improving the handover performance in IPv6 based WiBro system and show that the proposed scheme achieves loss-free and low handover latency during inter-subnet movement of the mobile stations through the simulation.

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.