• 제목/요약/키워드: Medium Voltage Drive System

검색결과 15건 처리시간 0.023초

Hybrid-Boost Modular Multilevel Converter-Based Medium-Voltage Multiphase Induction Motor Drive for Subsea Applications

  • Daoud, Mohamed;Elserougi, Ahmed;Massoud, Ahmed;Bojoi, Radu;Abdel-Khalik, Ayman;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.714-726
    • /
    • 2019
  • This paper proposes a hybrid-boost Modular Multilevel Converter (MMC) for the Medium-Voltage (MV) Variable Speed Drives (VSDs) employed in subsea applications, such as oil and gas recovery. In the presented architecture, a hybrid-boost MMC with a reduced number of semiconductor devices driving a multiphase Induction Machine (IM) is investigated. The stepped output voltage generated by the MMC reduces or eliminates the filtering requirements. Moreover, the boosting capability of the proposed architecture eliminates the need for bulky low-frequency transformers at the converter output terminals. A detailed illustration of the hybrid-boost MMC operation, the expected limitations/constraints, and the voltage balancing technique are presented. A simulation model of the proposed MV hybrid-boost MMC-based five-phase IM drive has been built to investigate the system performance. Finally, a downscaled prototype has been constructed for experimental verification.

800MW 가스발전소의 모터 설비에 고압 드라이브를 적용한 사례 (Application of medium-voltage drive to motor equipment of 800MW gas power plant.)

  • 김경수;오현석;박종제;전재현;박철현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.424-425
    • /
    • 2018
  • In the introduction, this paper introduces LS Industrial Systems' medium-voltage drive installed at Hyundai Green Power, an 800MW gas power plant. In the body, it explains the synchronous transfer technology and new speed search technology applied to Forced Draft(FD) Fan and Boiler Feed-water(BF) Pump, which are power generation facilities. Lastly, it shows the annual energy saving amount and operation status which are applied to each facility and proves that it is a successful application case.

  • PDF

3.3kV(105A) COMPACT RACK TYPE 고압 인버터 시스템의 방열 성능 향상을 위한 열유동 해석 (THERMAL-FLUID ANALYSIS FOR COOLING PERFORMANCE IMPROVEMENT OF 3.3KV(105A) COMPACT RACK TYPE MEDIUM VOLTAGE INVERTER SYSTEM)

  • 김선영;김성대;유성열;유남규;김태범;홍찬욱;고한서
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.24-28
    • /
    • 2014
  • With ever rising concerns about saving of fossil fuel resource, there have been an increasing demand for use of energy more efficiently. The electric motor driven inverters can be a great help to improve energy efficiency. They are also used to control the motor speed to the actual need. Therefore the use of them can lead to reduce energy consumption. In particular, the medium voltage(MV) drive systems used for pumps, fans, steel rolling mills and tractions have widespread applications in the industry. They cover power ratings from 0.4MW to 40MW at the MV level of 2.3kV to 13.8kV. The majority of the installed MV drive systems however, are in the 1MW to 4MW range with voltage rating from 3.3kV to 6.6kV. But they are required to reduce size and weight like other power electronic equipments. In this paper, we studied on the 3.3kV(105A) compact rack type inverter system for improving the cooling efficiency. At first, we confirmed the tendency of temperature with computational simulation using ANSYS ICEPAK and actual experimental tests. And then we researched thermal performance improvement designs in order to reduce temperature of the transformer for the safe operation. It can reduce temperature of transformer that using pipe type flow guide in the system. As a result, we found out more efficient solution by thermal-fluid analysis.

Turn-on Loss Reduction for High Voltage Power Stack Using Active Gate Driving Method

  • Kim, Jin-Hong;Park, Joon Sung;Gu, Bon-Gwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.632-642
    • /
    • 2017
  • This paper presents an improved approach towards reducing the switching loss of insulated gate bipolar transistors (IGBTs) for a medium-capacity-class power conditioning system (PCS). In order to improve the switching performance, the switching operation is analyzed, and based on this analysis, an improved switching method that reduces the switching time and switching loss is proposed. Compared to a conventional gate drive scheme, the switching loss, switching time, and delay are improved in the proposed gate driving method. The performance of the proposed gate driving method is verified through several experiments.

A Hierarchical Model Predictive Voltage Control for NPC/H-Bridge Converters with a Reduced Computational Burden

  • Gong, Zheng;Dai, Peng;Wu, Xiaojie;Deng, Fujin;Liu, Dong;Chen, Zhe
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.136-148
    • /
    • 2017
  • In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector modulation (SVM) is proposed. By the hierarchical structure of different cost functions, load currents can be controlled well and common mode voltage can be maintained at low values. The proposed strategy could be easily expanded to the systems with high number of voltage levels while the amount of required calculation is significantly reduced and the advantages of the conventional FCS-MPC strategy are reserved. In addition, a HMPVC-based field oriented control scheme is applied to a drive system with the NPC/H-Bridge converter. Both steady-state and transient performances are evaluated by simulations and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy.

중전압 전동기 구동시스템을 위한 결합 인덕터를 갖는 플라잉 커패시터 MMC (Flying-Capacitor Modular Multilevel Converters with Coupled Inductors for Medium-Voltage Motor Drive System)

  • 리덕중;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.173-174
    • /
    • 2018
  • This paper proposes the coupled inductor instead of four non-coupled inductors in each leg of the flying-capacitor modular multilevel converter (MMC) to reduce the dimension, weight and cost of the magnetic core. The simulation results have verified the effectiveness of the proposed coupled inductor.

  • PDF

Optimal Voltage Vector Selection Method for Torque Ripple Reduction in the Direct Torque Control of Five-phase Induction Motors

  • Kang, Seong-Yun;Shin, Hye Ung;Park, Sung-Min;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1203-1210
    • /
    • 2017
  • This paper presents an improved switching selection method for the direct torque control (DTC) of five-phase induction motors (IMs). The proposed method is conducted using optimal switching selection. A five-phase inverter has 32 voltage vectors which are divided into 30 nonzero voltage vectors and two zero voltage vectors. The magnitudes of the voltage vectors consist of large, medium, and small voltage vectors. In addition, these vectors are related to the torque response and torque ripple. When a large voltage vector is selected in a drive system, the torque response time decreases with an increased torque ripple. On the other hand, when a small voltage vector is selected, the torque response time and torque ripple increase. As a result, this paper proposes an optimal voltage vector selection method for improved DTC of a five-phase induction machine depending on the situation. Simulation and experimental results verify the effectiveness of the proposed control algorithm.

패턴인식 기법을 이용한 유도전동기 구동용 전압형 인버터의 고장진단 (Fault Diagnosis of Voltage-Fed Inverters Using Pattern Recognition Techniques for Induction Motor Drive)

  • 박장환;박성무;이대종;김동화;전명근
    • 조명전기설비학회논문지
    • /
    • 제19권3호
    • /
    • pp.75-84
    • /
    • 2005
  • 유도전동기 구동시스템의 예상치 않은 고장은 많은 산업 응용분야에서 심각한 문제를 초래시킬 수 있으므로, 유도전동기 구동을 위한 전압형 PWM 인버터의 고장진단에 대해 연구한다. 진단의 고려 대상은 정류기 다이오드, 스위칭 장치 및 입력단의 개방회로 고장이며, 진단신호는 전동기 전류로부터 유도한다. 고장의 특징추출은 dq-전류 경로의 크기를 이용하였고, 진단은 PCA와 LDA를 적용한다. 또한, 본 논문에서는 일반적인 중${\cdot}$소형 유도전동기 구동 시스템의 제어기에 진단 소프트웨어를 추가하여 사용하는 것에 대한 가능성을 제시하며, 그에 관련해 수행속도에 따른 진단결과들을 보여준다. 최종적으로, MATLAB을 이용하여 인버터의 고장진단에 대한 모의실험을 수행 하였고, 제안된 알고리즘의 유용성을 검증하였다.

Selection of Voltage Vectors in Three-Level Five-Phase Direct Torque Control for Performance Improvement

  • Tatte, Yogesh N.;Aware, Mohan V.
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2162-2172
    • /
    • 2016
  • This paper presents a Direct Torque Control (DTC) strategy for the five-phase induction motor driven by a three-level five-phase inverter in order to improve the performance of the five-phase induction motor. In the proposed DTC technique, only 22 voltage vectors out of 243 available voltage vectors in a three-level five-phase inverter are selected and are divided in 10 sectors each with a width of $36^{\circ}$. The four different DTC combinations (DTC-I, II, III and IV) for a three-level five-phase induction motor drive are investigated for improving the performance of five-phase induction motor. All four of the DTC strategies utilize a combination of the same large and zero voltage vectors, but with different medium voltage vectors. Out of these four techniques, DTC-II gives the best performance when compared to the others. This DTC-II technique is analyzed in detail for improvements in the performance of five-phase induction motor in terms of torque ripple, x-y stator flux and Total Harmonics Distortion (THD) of the stator phase current when compared to its two-level counterparts. To verify the effectiveness of the proposed three-level five-phase DTC control strategy, a DSP based experimental system is build. Simulation and experimental results are provided in order to validate the proposed DTC technique.

인터리빙 PFC를 적용한 모터구동 인버터 시스템 설계 (Design of the Inverter Motor Drive System Applied to PFC using Interleaving Method)

  • 윤성식;최현의;김태우;안호균;박승규;윤태성;곽군평
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.14-19
    • /
    • 2010
  • In this paper, using interleaved power factor correction how to improve the inverter efficiency studied. Interleaved method can reduce the conduction losses and the inductor energy. Generally, critical conduction mode (CRM) boost PFC converter used low power level because of the high peak currents. if you use the interleaved mode, CRM PFC can be used medium or high power application. interleaved CRM PFC can reduce current ripple for higher system reliability and size of buck capacitor and EMI filter size. Interleaved CRM PFC that is installed in front of inverter can maintain the constant voltage regardless of the input voltage.