• Title/Summary/Keyword: Medicinal fungus

Search Result 90, Processing Time 0.025 seconds

Development and Optimization of Culture Medium for the Production of Glabridin by Aspergillus eucalypticola: An Endophytic Fungus Isolated from Glycyrrhiza glabra L. (Fabaceae)

  • Parisa Bahadori Ganjabadi;Mohsen Farzaneh ;Mohammad Hossein Mirjalili
    • Mycobiology
    • /
    • v.51 no.4
    • /
    • pp.230-238
    • /
    • 2023
  • Glabridin is a well-known active isoflavone found in the root of licorice (Glycyrrhiza glabra L.) that possess a wide range of biological activity. Plant cells, hairy roots, and fungal endophytes cultures are the most important alternative methods for plant resources conservation and sustainable production of natural compounds, which has received much attention in recent decades. In the present study, an efficient culture condition was optimized for the biomass accumulation and glabridin production from fungal endophyte Aspergillus eucalypticola SBU-11AE isolated from licorice root. Type of culture medium, range of pH, and licorice root extract (as an elicitor) were tested. The results showed that the highest and lowest biomass production was observed on PCB medium (6.43 ± 0.32 g/l) and peptone malt (5.85 + 0.11 g/l), respectively. The medium culture PCB was produced the highest level of glabridin (7.26 ± 0.44 mg/l), while the lowest level (4.47 ± 0.02 mg/l) was obtained from the medium peptone malt. The highest biomass (8.51 ± 0.43 g/l) and glabridin (8.30 ± 0.51 mg/l) production were observed from the PCB medium adjusted with pH = 6, while the lowest value of both traits was obtained from the same medium with pH = 7. The highest production of total glabridin (10.85 ± 0.84 mg/l) was also obtained from the culture medium treated with 100 mg/l of the plant root extract. This information can be interestingly used for the commercialization of glabridin production for further industrial applications.

Screening of Antimicrobial Activity from Differential Extracts of Allii sativi Bulbus (대산의 분획별 추출물에서 항균활성 검색)

  • Kim Hee Seok;Bae Heung Mo;Kim Shin Moo;Lee Hyun Ok;Kim Ki young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1184-1189
    • /
    • 2002
  • Allii sativi Bulbus(garlic) have been shown to possess medicinal value, in particular, antimicrobial activity. In this study, we compared the efficacy on some pathogenic bacteria and fungus among several different extracts(water, hexane, ethyl acetate, methanol, chloroform) of Allii sativi Bulbus. Animal pathogenic bacteria and fungus(S. gallinarium: KCTC 2441, S. flexneri: KCTC 2361, E. cloacae: KCTC 2006, K. pneumonia: KCTC 2208, C. albicans: KCTC 1940) were used to test by measurement of minimum inhibitory concentrations(MIC) and disc diffusion. Allii sativi Bulbus were cut and mixed with water at 37℃ about 24 h and filtered, and several different solvents(hexane, chloroform, ethyl acetate, methanol) were respectively added to separate the fraction of each solvent. The antimicrobial(bacteriocidal) and antifungal effect were apparently shown from water extract, hexane and ethyl acetate extract against using strains(Staphylococcus gallinarium, Shigella flexneri, Enterobacter doacae, Klebsiella pneumonia, Candida albicans). Especially, the water extract showed the superior efficacy. And the clear zone size of water extract (11~27 mm) was greater than that of gentamycin, hexane extract and ethyl acetate extract against S. gallinarium. S. flexneri, K. pneumonia and C. albicans. Minimum inhibitory concentrations(MIC) of water extract appeared to around 2.0~7.5 ㎎/㎖ against S. gallinarium, S. flexneri, E. cloacae and K. pneumonia. The greater activity was shown by water extract because the MIC of water extract for C. albicans observed in very low concentration(<1.0 ㎎/㎖) compared to hexane(5.0 ㎎/㎖) and ethyl acetate(10.0 ㎎/㎖). Therefore, these results exhibited that water extract of Allii sativi Bulbus have stronger antimicrobial activity than hexane and ethyl acetate extract, and may be useful as topical medicine of superficial infections causing C. albicans as well as antifungal agents.

Physicochemical Requirement for the Vegetative Growth of Schizophyllum commune Collected from Different Ecological Origins

  • Imtiaj, Ahmed;Jayasinghe, Chandana;Lee, Geon-Woo;Kim, Hye-Young;Shim, Mi-Ja;Rho, Hyun-Su;Lee, Hyun-Sook;Hur, Hyun;Lee, Min-Woong;Lee, U-Youn;Lee, Tae-Soo
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • Schizophyllum commune is an edible and medicinal mushroom widely distributed in the world. The optimal growth conditions for the mycelia of 10 strains of the fungus were investigated. The temperature suitable for the mycelial growth and density was obtained at $30{\sim}35^{\circ}C$. Among the tested conditions, the minimum mycelial growth was found at $15^{\circ}C$. In case of pH, the most favorable growth was found at pH 5. The results indicated that this mushroom well adapted to high temperature and low pH for its mycelial growth. Considering growth phenotype of mycelia, Hamada, Hennerberg, PDA and YM were the most suitable and Lilly, Glucose triptone, Glucose peptone and Hoppkins were the most unfavorable among tested media for the mycelial growth of S. commune. Out of tested carbon sources, dextrin and fructose were the most suitable and lactose, mannose and sorbitol were the unsuitable for the fungus. Compact mycelial density was obtained from most of the carbon sources. Among used nitrogen sources, calcium nitrate, potassium nitrate and alanine were the most appropriate and the most incompatible were ammonium phosphate, histidine, urea and arginine for mycelial growth of S. commune on the culture media. Calcium nitrate, histidine and potassium nitrate showed moderately thin or thin, and rest of nitrogen sources showed compact or moderately compact mycelial density.

Multi-Function of a New Bioactive Secondary Metabolite Derived from Endophytic Fungus Colletotrichum acutatum of Angelica sinensis

  • Ramy S. Yehia
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.806-822
    • /
    • 2023
  • In the current study we assessed a new crystallized compound, 5-(1-hydroxybutyl)-4-methoxy-3-methyl-2H-pyran-2-one (C-HMMP), from the endophytic fungus Colletotrichum acutatum residing in the medicinal plant Angelica sinensis for its in vitro antimicrobial, antibiofilm, antioxidant, antimalarial, and anti-proliferative properties. The promising compound was identified as C-HMMP through antimicrobial-guided fraction. The structure of C-HMMP was unambiguously confirmed by 2D NMR and HIRS spectroscopic analysis. Antimicrobial property testing of C-HMMP showed it to be effective against a variety of pathogenic bacteria and fungi with MICs ranging from 3.9 to 31.25 ㎍/ml. The compound displayed excellent antibiofilm activity against C. albicans, S. aureus, and K. pneumonia. Furthermore, the antimalarial and radical scavenging activities of C-HMMP were clearly dosedependent, with IC50 values of 0.15 and 131.2 ㎍/ml. The anti-proliferative activity of C-HMMP against the HepG-2, HeLa, and MCF-7 cell lines in vitro was investigated by MTT assay, revealing notable anti-proliferative activity with IC50 values of 114.1, 90, and 133.6 ㎍/ml, respectively. Moreover, CHMMP successfully targets topoisomerase I and demonstrated beneficial anti-mutagenicity in the Ames test against the reactive carcinogenic mutagen, 2-aminofluorene (2-AF). Finally, the compound inhibited the activity of α-glucosidase and α-amylase with IC50 values of 144.7 and 118.6 ㎍/ml, respectively. To the best of our knowledge, the identified compound C-HMMP was obtained for the first time from C. acutatum of A. sinensis, and this study demonstrated that C-HMMP has relevant biological significance and could provide better therapeutic targets against disease.

Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris

  • Huan huan Yan;Yi tong Shang;Li hong Wang;Xue qin Tian;Van-Tuan Tran;Li hua Yao;Bin Zeng;Zhi hong Hu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1178-1187
    • /
    • 2024
  • Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.

Selection of Optimal Biotic Elicitor on Tropane Alkaloid Production of Hairy Roots in Scopolia parviflora Nakai (미치광이풀 모상근 배양에서 Tropane Alkaloids 생산성 증진을 위한 최적 생물학적 엘리시터 선발)

  • Jung, Hee-Young;Kang, Seung-Mi;Kang, Young-Min;Kim, Yong-Duk;Yang, Jae-Kyung;Chung, Young-Gwan;Choi, Myung-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.5
    • /
    • pp.358-363
    • /
    • 2003
  • ScopoIamine and hyoscyamine which belong to tropane alkaloids are the pharmaceutically valuable anticholinergic drugs. In order to increase the productivities, the effects of elicitation were investigated during hairy root cultures of Scopolia. parviflora. Biotic elicitors originated from 3 fungi and 1 yeast were prepared as homogenate and supernatant and added to 3-week-old cultures. Both of homogenate and supernatant of Candida albicans elicitors increased the scopolamine production. The production of hyoscyamine was enhanced by homogenate of Fusarium solani and supernatant of C. albicans. Most of the other fungal elicitors were also improved on the tropane alkaloid production compared to non-treatment. Among the elicitors tested, C. albicans was proved the optimal biotic elicitor on tropane alkaloids production. These results will be served mass production of tropane alkaloids by large-scale production.

Effect of Crop Rotation System on Soil Chemical Properties and Ginseng Root Rot after Harvesting Ginseng (인삼 연작지에서 윤작물 작부체계가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Park, Kyung Hoon;Jang, In Bok;Jin, Mei Lan;Seo, Moon Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • Background: The application of crop rotation systems may reduce the occurrence of soil-borne diseases by releasing allelochemicals and by subsequent microbial decomposition. Methods and Results: For reduction of ginseng root rot by the crop rotation system, after harvesting 6-year-old ginseng, fresh ginseng was grown along with continuous cultivation of sweet potato, peanut, and bellflower. Growth of 2-year-old ginseng was significantly inhibited in the continuous cultivation than in the first cultivation. Sweet potato, peanut and bellflower cultivations assisted in obtaining normal yields of ginseng in the first year after the harvest of 6-year-old ginseng. Salt concentration, potassium and sodium contents were gradually decreased, and, organic matter was gradually increased through cirp rotation. Phosphate, calcium and magnesium contents were not altered. The density of the root rot fungus was gradually decreased by the increase in crop rotation; however it was decreased distinctly in the first year compared to the second and third year. The severity of root rot disease tended to decrease gradually by the increase of crop rotation. Conclusions: Short-term crop rotation for three years promoted the growth of ginseng, however root rot infection was not inhibited significantly, although it was somewhat effective in lowering the density of the root rot pathogen.

Diversity and Biological Activities of Endophytic Fungi of $Emblica$ $officinalis$, an Ethnomedicinal Plant of India

  • Nath, Archana;Raghunatha, Prajwal;Joshi, S.R.
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • In the present study, an attempt to evaluate the antimicrobial and antioxidant activity of fungal endophytes inhabiting $Emblica$ $officinalis$ has been made keeping in view the medicinal importance of the selected host plant in Indian traditional practices. A total of four endophytic fungi belonging to Phylum Ascomycetes were isolated from different parts of the plant which were characterized morphologically and by using rDNA-internal transcribed spacer. The most frequently isolated endophyte was $Phomopsis$ sp. The antioxidant activity by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and reducing power assay, and total phenol were evaluated using ethanolic extract of endophytic fungi. DPPH activities in all the ethanolic extract increased with the increase in concentrations. Endophytes, $Phomopsis$ sp. and $Xylaria$ sp. showed highest antioxidant activity and also had the higher levels of phenolics. Antimicrobial activity of fungal extract were tested against four bacteria namely, $Escherichia$ $coli$ MTCC730, $Enteroccocus$ $faecalis$ MTCC2729, $Salmonella$ $enterica$ ser. $paratyphi$ MTCC735 and $Streptococcus$ $pyogenes$ MTCC1925, and the fungus $Candida$ $albicans$ MTCC183. In general, the fungal extracts inhibited the growth of test organisms except $E.$ $coli$.

In vitro antioxidant, anti-hyperglycemic, anti-cholinesterase, and inhibition of nitric oxide production activities of methanol and hot water extracts of Russula rosacea mushroom

  • Yoon, Ki Nam;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Russula rosacea, a mycorrhizal fungus, has been used for edible and medicinal purposes. This study was conducted to evaluate the in vitro antioxidant, anti-hyperglycemic, anti-cholinesterase, and nitric oxide inhibitory effects of the fruiting bodies from R. rosacea extracted with methanol, and hot water. The 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activities of the methanol and hot water extracts (2.0 mg/ml) of R. rosacea were comparable with BHT, the positive control. The chelating effects of the mushroom and hot water extracts were significantly higher than that of BHT. The reducing power of methanol and hot water extract (6 mg/ml) were significantly lower than that of BHT. Seven phenolic compounds were detected from acetonitrile and hydrochloric acid solvent extract of the mushroom. alpha-amylase and alpha-glucosidase inhibitory activities of methanol and hot water extracts were lower than that of acarbose, the positive control. The acetylcholinesterase and butyrylcholinesterase inhibitory effects were moderate compared with galanthamine, the standard drug. Nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 cells were inhibited significantly by the mushroom extracts in a concentration dependent manner. Therefore, we demonstrated that fruiting bodies of R. rosacea possess in vitro antioxidant, anti-hyperglycemic, anti-cholinesterase, and NO production inhibitory activities. The experimental results suggest that the fruiting bodies of R. rosacea are good natural antioxidant, anti-hyperglycemic, anti-cholinesterase, and anti-inflammatory sources.