• 제목/요약/키워드: Medici Platform

검색결과 1건 처리시간 0.014초

랜덤 포레스트를 활용한 만족도 사전조사에 따른 교육 역량 예측 분석 (An Analysis of Educational Capacity Prediction according to Pre-survey of Satisfaction using Random Forest)

  • 남기훈
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.487-492
    • /
    • 2022
  • 대학들은 급변하는 사회 환경에 적합한 교육역량 수준을 높이기 위해 다양한 방법들을 찾고 있다. 본 논문에서는 조사 항목을 수정, 보완한 만족도 사전조사를 개강 전에 실행하여 학업성취도를 높이고 전공 이탈자의 비율을 낮춰 교육 성과를 높이는 방안을 제안한다. 일반적인 만족도 조사 이후에 시행되는 교육품질 개선(CQI) 방식을 보완하고자 만족도 사전조사를 시행하였다. 학생역량을 강화하기 위해 설계가 진행 중인 인공지능형 메디치 플랫폼에 적용할 수 있는 머신러닝 기법의 랜덤 포레스트를 활용하여 중요한 데이터의 예측 및 분석을 가능하게 하였다. 만족도 사전조사 데이터들을 전처리하여 수강 신청 학생들의 정보를 설명 변수로 정의하고 분류하여 모델 생성 및 학습하였다. 실험 환경은 주피터 노트북 3.7.7, Python 3.7에서 관련 알고리즘과 사이킷런(sklearn) 라이브러리를 함께 사용하였다. 제안하는 방안의 결과를 수업에 반영하여 수업 후에 진행하는 교육 만족도 조사의 변화와 중도 탈락생 수의 동향을 비교 분석하였다.