• Title/Summary/Keyword: Medical measurement

Search Result 2,745, Processing Time 0.029 seconds

Development of 3-D Stereotactic Localization System and Radiation Measurement for Stereotactic Radiosurgery (방사선수술을 위한 3차원 정위 시스템 및 방사선량 측정 시스템 개발)

  • Suh, Tae-Suk;Suh, Doug-Young;Park, Sung-Hun;Jang, Hong-Seok;Choe, Bo-Young;Yoon, Sei-Chul;Shinn, Kyung-Sub;Bahk, Yong-Whee;Kim, Il-Hwan;Kang, Wee-Sang;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • The purpose of this research is to develop stereotactic localization and radiation measurement system for the efficient and precise radiosurgery. The algorithm to obtain a 3-D stereotactic coordinates of the target has been developed using a Fisher CT or angio localization. The procedure of stereotactic localization was programmed with PC computer, and consists of three steps: (1) transferring patient images into PC; (2) marking the position of target and reference points of the localizer from the patient image; (3) computing the stereotactic 3-D coordinates of target associated with position information of localizer. Coordinate transformation was quickly done on a real time base. The difference of coordinates computed from between Angio and CT localization method was within 2 mm, which could be generally accepted for the reliability of the localization system developed. We measured dose distribution in small fields of NEC 6 MVX linear accelerator using various detector; ion chamber, film, diode. Specific quantities measured include output factor, percent depth dose (PDD), tissue maximum ratio (TMR), off-axis ratio (OAR). There was small variation of measured data according to the different kinds of detectors used. The overall trends of measured beam data were similar enough to rely on our measurement. The measurement was performed with the use of hand-made spherical water phantom and film for standard arc set-up. We obtained the dose distribution as we expected. In conclusion, PC-based 3-D stereotactic localization system was developed to determine the stereotactic coordinate of the target. A convenient technique for the small field measurement was demonstrated. Those methods will be much helpful for the stereotactic radiosurgery.

  • PDF

Deep Learning Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images

  • Yura Ahn;Jee Seok Yoon;Seung Soo Lee;Heung-Il Suk;Jung Hee Son;Yu Sub Sung;Yedaun Lee;Bo-Kyeong Kang;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.8
    • /
    • pp.987-997
    • /
    • 2020
  • Objective: Measurement of the liver and spleen volumes has clinical implications. Although computed tomography (CT) volumetry is considered to be the most reliable noninvasive method for liver and spleen volume measurement, it has limited application in clinical practice due to its time-consuming segmentation process. We aimed to develop and validate a deep learning algorithm (DLA) for fully automated liver and spleen segmentation using portal venous phase CT images in various liver conditions. Materials and Methods: A DLA for liver and spleen segmentation was trained using a development dataset of portal venous CT images from 813 patients. Performance of the DLA was evaluated in two separate test datasets: dataset-1 which included 150 CT examinations in patients with various liver conditions (i.e., healthy liver, fatty liver, chronic liver disease, cirrhosis, and post-hepatectomy) and dataset-2 which included 50 pairs of CT examinations performed at ours and other institutions. The performance of the DLA was evaluated using the dice similarity score (DSS) for segmentation and Bland-Altman 95% limits of agreement (LOA) for measurement of the volumetric indices, which was compared with that of ground truth manual segmentation. Results: In test dataset-1, the DLA achieved a mean DSS of 0.973 and 0.974 for liver and spleen segmentation, respectively, with no significant difference in DSS across different liver conditions (p = 0.60 and 0.26 for the liver and spleen, respectively). For the measurement of volumetric indices, the Bland-Altman 95% LOA was -0.17 ± 3.07% for liver volume and -0.56 ± 3.78% for spleen volume. In test dataset-2, DLA performance using CT images obtained at outside institutions and our institution was comparable for liver (DSS, 0.982 vs. 0.983; p = 0.28) and spleen (DSS, 0.969 vs. 0.968; p = 0.41) segmentation. Conclusion: The DLA enabled highly accurate segmentation and volume measurement of the liver and spleen using portal venous phase CT images of patients with various liver conditions.

Development of Operational Technology and Integrated Measurement Information Management System for the Radioactivity Measurement Device (방사능 측정장치 운영 기술 및 측정정보 통합관리 시스템 개발)

  • Dong-Sik Jin;Kyeong-Ryeong Kim;Jae-Geun Lee
    • Journal of radiological science and technology
    • /
    • v.47 no.3
    • /
    • pp.183-195
    • /
    • 2024
  • Additional functional upgrades to the large-area compton camera (LACC) measurement device that can provide characteristics evaluation information (nuclear species and radioactivity) and two-dimensional or three-dimensional distribution imaging information of radioactive materials existing in surface or internal of concrete structures are required in terms of work stability and efficiency in order to apply to actual decommissioning sites such as nuclear power plants or medical cyclotron facilities by using this measurement device. To this purpose, the technology that allows radiation workers to intuitively and visually check the distribution of radioactive materials in advance by matching the two-dimensional distribution imaging information of radioactive materials obtained through the LACC measurement device and visual imaging of the measurement zone (10 m × 5 m) was developed. In addition, the separate system that can automatically adjust the position (height) in units of the measurement area size (0.7 m × 0.3 m × 0.8 m) of the LACC measurement device was developed and the integrated management system for characteristics evaluation information and two-dimensional or three-dimensional distribution imaging information obtained per unit of measurement for radioactive materials was developed. These functional upgrades related to LACC measurement device can improve work efficiency and safety when measuring radioactivity of concrete structures and enable the establishment of appropriate decommissioning strategies using radioactivity measurement information for decommissioning nuclear power plants or medical cyclotron facilities.

Internal Radiation Dosimetry using Nuclear Medicine Imaging in Radionuclide Therapy (방사성핵종 이용 치료에서 핵의학영상을 이용한 흡수선량평가)

  • Kim, Kyeong-Min;Byun, Byun-Hyun;Cheon, Gi-Jeong;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.265-271
    • /
    • 2007
  • Radionuclide therapy has been an important field in nuclear medicine. In radionuclide therapy, relevant evaluation of Internally absorbed dose is essential for the achievement of efficient and sufficient treatment of incurable disease, and can be accomplish by means of accurate measurement of radioactivity in body and its changes with time. Recently, the advances of nuclear medicine imaging and multi modality imaging processing techniques can provide change of more accurate and easier measurement of the measures commented above, in cooperation of conventional imaging based approaches. in this review, basic concept for internal dosimetry using nuclear medicine imaging is summarized with several check points which should be considered In real practice.

Radiographic Analysis of Scoliosis Using Convolutional Neural Network in Clinical Practice (컨볼루션 신경망을 이용한 척추측만증의 방사선학적 분석의 임상 적용)

  • Ha Yun Oh;Tae Kun Kim;Yun Sun Choi;Mira Park;Ra Gyoung Yoon;Jin Kyung An
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.5
    • /
    • pp.926-936
    • /
    • 2024
  • Purpose To assess the reliability and accuracy of an automated Cobb angle measurement (ACAM) using a convolutional neural network (CNN) for scoliosis evaluation and to compare measurement times. Materials and Methods ACAM was applied to spine radiographs in 411 patients suspected of scoliosis. Observer 1 (consensus of two musculoskeletal radiologists) and observer 2 (a radiology resident) measured Cobb angle (CA). CA measurements were categorized using observer 1's measurements as the reference standard. Inter-observer reliability and correlation were assessed using intraclass correlation coefficient (ICC) and Spearman's rank correlation coefficient, respectively. Accuracy and measurement time of ACAM and observers were evaluated. Results ACAM demonstrated excellent reliability and very high correlation with observer 1 (ICC = 0.976, Spearman's rank correlation = 0.948), with a mean CA difference of 1.1. Overall accuracy was high (88.2%), particularly in mild (92.2%) and moderate (96%) scoliosis. Accuracy was lower in spinal asymmetry (77.1%) and higher in severe scoliosis (95%), although the CA was lower compared to the observers. ACAM significantly reduced measurement time by nearly half compared to the observers (p < 0.001). Conclusion ACAM using CNN enhances CA measurement for assessing mild or moderate scoliosis, despite limitations in spinal asymmetry or severe scoliosis. Nonetheless, it substantially decreases measurement time.

Development of wearable Range of Motion measurement device capable of dynamic measurement

  • Song, Seo Won;Lee, Minho;Kang, Min Soo
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.154-160
    • /
    • 2019
  • In this paper, we propose the miniaturization size of wearable Range of Motion(ROM) and a system that can be connected with smart devices in real-time to measure the joint movement range dynamically. Currently, the ROM of the joint is directly measured by a person using a goniometer. Conventional methods are different depending on the measurement method and location of the measurement person, which makes it difficult to measure consistently and may cause errors. Also, it is impossible to measure the ROM of joints in real-life situations. Therefore, the wearable sensor is attached to the joint to be measured to develop a miniaturize size ROM device that can measure the range of motion of the joint in real-time. The sensor measured the resistance value changed according to the movement of the joint using a load cell. Also, the sensed analog values were converted to digital values using an Analog to Digital Converter(ADC). The converted amount can be transmitted wireless to the smart device through the wearable sensor node. As a result, the developed device can be measured more consistently than the measurement using the goniometer, communication with IoT-based smart devices, and wearable enables dynamic observation. The developed wearable sensor node will be able to monitor the dynamic state of rehabilitation patients in real-time and improve the rapid change of treatment method and customized treatment.

A Study on the Difference Method of Magnetic Resonance Signal Measurement when Using Multi-channel Coil and Parallel Imaging

  • Choi, Kwan-Woo;Lee, Ho-Beom;Son, Soon-Yong;Jeong, Mi-Ae
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.220-226
    • /
    • 2017
  • SNR (signal to ratio) is a criterion for providing objective information for evaluating the performance of a magnetic resonance imaging device, and is an important measurement standard for evaluating the quality of MR (Magnetic Resonance) image. The purpose of our study is to evaluate the correct SNR measurement for multi-channel coil and parallel imaging. As a result of research, we found that both T1 and T2 weighted images show the narrowest confidence interval of the method recommended by NEMA (The National Electrical manufacturers Association) 1 having a single measurement method, whereas the ACR (American College of Radiology) measurement method using a multi-channel coil and a parallel imaging technique shows the widest confidence interval. There is a significance in that we quantitatively verified the inaccurate problems of a signal to noise ratio using a ACR measurement method when using a multi-channel coil and a parallel imaging technique of which method does not satisfy the preconditions that researchers could overlook.

Blood pressure measurements and hypertension in infants, children, and adolescents: from the postmercury to mobile devices

  • Lim, Seon Hee;Kim, Seong Heon
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.2
    • /
    • pp.73-80
    • /
    • 2022
  • A mercury sphygmomanometer (MS) has been the gold standard for pediatric blood pressure (BP) measurements, and diagnosing hypertension is critical. However, because of environmental issues, other alternatives are needed. Noninvasive BP measurement devices are largely divided into auscultatory and oscillometric types. The aneroid sphygmomanometer, the currently used auscultatory method, is inferior to MS in terms of limitations such as validation and regular calibration and difficult to apply to infants, in whom Korotkoff sounds are not audible. The oscillometric method uses an automatic device that eliminates errors caused by human observers and has the advantage of being easy to use; however, owing to its measurement accuracy issues, the development of an international validation protocol for children is important. The hybrid method, which combines the auscultatory and electronic methods, solves some of these problems by eliminating the observer bias of terminal digit preference while maintaining measurement accuracy; however, the auscultatory method remains limited. As the age-related characteristics of the pediatric group are heterogeneous, it is necessary to reconsider the appropriate BP measurement method suitable for this indication. In addition, the mobile application-based BP measurement market is growing rapidly with the development of smartphone applications. Although more research is still needed on their accuracy, many experts expect that mobile application-based BP measurement will effectively reduce medical costs due to increased ease of access and early BP management.

Study on Automatic Human Body Temperature Measurement System Based on Internet of Things

  • Quoc Cuong Nguyen;Quoc Huy Nguyen;Jaesang Cha
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.50-58
    • /
    • 2024
  • Body temperature plays an important role in medicine, some diseases are characterized by changes in human body temperature. Monitoring body temperature also allows doctors to monitor the effectiveness of medical treatments. Accurate body temperature measurement is key to detecting fevers, especially fevers related to infection with the SARS-CoV-2 virus that caused the recent Covid-19 pandemic in the world. The solution of measuring body temperature using a thermal camera is fast but has a high cost and is not suitable for some organizations with difficult economic conditions today. Use a medical thermometer to measure body temperature directly for a slow rate, making it easier to spread disease from person to person. In this paper, we propose a completely automatic body temperature measurement system that can adjust the height according to the person taking the measurement, has a measurement logging system and is monitored via the internet. Experimental results show that the proposed method has successfully created a fully automatic human body measurement system. Furthermore, this research also helps the school's scientists and students gain more knowledge and experience to apply Internet of Things technology in real life.