Acknowledgement
Seung Soo Lee was responsible for the clinical study, and Heung-Il Suk was responsible for the development of the deep learning algorithm. Both authors contributed equally to this study and assume the role of corresponding authors.
References
- Lim MC, Tan CH, Cai J, Zheng J, Kow AW. CT volumetry of the liver: where does it stand in clinical practice? Clin Radiol 2014;69:887-895 https://doi.org/10.1016/j.crad.2013.12.021
- Schindl MJ, Redhead DN, Fearon KC, Garden OJ, Wigmore SJ; Edinburgh Liver Surgery and Transplantation Experimental Research Group (eLISTER). The value of residual liver volume as a predictor of hepatic dysfunction and infection after major liver resection. Gut 2005;54:289-296 https://doi.org/10.1136/gut.2004.046524
- Ogasawara K, Une Y, Nakajima Y, Uchino J. The significance of measuring liver volume using computed tomographic images before and after hepatectomy. Surgery Today 1995;25:43-48 https://doi.org/10.1007/BF00309384
- Prodeau M, Drumez E, Duhamel A, Vibert E, Farges O, Lassailly G, et al. An ordinal model to predict the risk of symptomatic liver failure in patients with cirrhosis undergoing hepatectomy. J Hepatol 2019;71:920-929 https://doi.org/10.1016/j.jhep.2019.06.003
- Huang Y, Huang B, Kan T, Yang B, Yuan M, Wang J. Liver-tospleen ratio as an index of chronic liver diseases and safety of hepatectomy: a pilot study. World J Surg 2014;38:3186-3192 https://doi.org/10.1007/s00268-014-2717-6
- Berzigotti A, Seijo S, Arena U, Abraldes JG, Vizzutti F, GarciaPagan JC, et al. Elastography, spleen size, and platelet count identify portal hypertension in patients with compensated cirrhosis. Gastroenterology 2013;144:102-111.e1 https://doi.org/10.1053/j.gastro.2012.10.001
- Iranmanesh P, Vazquez O, Terraz S, Majno P, Spahr L, Poncet A, et al. Accurate computed tomography-based portal pressure assessment in patients with hepatocellular carcinoma. J Hepatol 2014;60:969-974 https://doi.org/10.1016/j.jhep.2013.12.015
- Murata Y, Abe M, Hiasa Y, Azemoto N, Kumagi T, Furukawa S, et al. Liver/spleen volume ratio as a predictor of prognosis in primary biliary cirrhosis. J Gastroenterol 2008;43:632-636 https://doi.org/10.1007/s00535-008-2202-9
- Pickhardt PJ, Malecki K, Hunt OF, Beaumont C, Kloke J, Ziemlewicz TJ, et al. Hepatosplenic volumetric assessment at MDCT for staging liver fibrosis. Eur Radiol 2017;27:3060-3068 https://doi.org/10.1007/s00330-016-4648-0
- Son JH, Lee SS, Lee Y, Kang BK, Sung YS, Jo S, et al. Assessment of liver fibrosis severity using computed tomography-based liver and spleen volumetric indices in patients with chronic liver disease. Eur Radiol 2020;30:3486-3496 https://doi.org/10.1007/s00330-020-06665-4
- Gotra A, Sivakumaran L, Chartrand G, Vu KN, VandenbrouckeMenu F, Kauffmann C, et al. Liver segmentation: indications, techniques and future directions. Insights Imaging 2017;8:377-392 https://doi.org/10.1007/s13244-017-0558-1
- Hu P, Wu F, Peng J, Liang P, Kong D. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol 2016;61:8676-8698 https://doi.org/10.1088/1361-6560/61/24/8676
- Nakayama Y, Li Q, Katsuragawa S, Ikeda R, Hiai Y, Awai K, et al. Automated hepatic volumetry for living related liver transplantation at multisection CT. Radiology 2006;240:743-748 https://doi.org/10.1148/radiol.2403050850
- Fananapazir G, Bashir MR, Marin D, Boll DT. Computeraided liver volumetry: performance of a fully-automated, prototype post-processing solution for whole-organ and lobar segmentation based on MDCT imaging. Abdom Imaging 2015;40:1203-1212 https://doi.org/10.1007/s00261-014-0276-9
- Huynh HT, Karademir I, Oto A, Suzuki K. Computerized liver volumetry on MRI by using 3D geodesic active contour segmentation. AJR Am J Roentgenol 2014;202:152-159 https://doi.org/10.2214/AJR.13.10812
- Grieser C, Denecke T, Rothe JH, Geisel D, Stelter L, Cannon Walter T, et al. Gd-EOB enhanced MRI T1-weighted 3D-GRE with and without elevated flip angle modulation for threshold-based liver volume segmentation. Acta Radiol 2015;56:1419-1427 https://doi.org/10.1177/0284185114558975
- Huo Y, Terry JG, Wang J, Nair S, Lasko TA, Freedman BI, et al. Fully automatic liver attenuation estimation combing CNN segmentation and morphological operations. Med Phys 2019;46:3508-3519 https://doi.org/10.1002/mp.13675
- Wang K, Mamidipalli A, Retson T, Bahrami N, Hasenstab K, Blansit K, et al. Automated CT and MRI liver segmentation and biometry using a generalized convolutional neural network. Radiology: Artificial Intelligence 2019;1:e180022
- Choi KJ, Jang JK, Lee SS, Sung YS, Shim WH, Kim HS, et al. Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced CT images in the Liver. Radiology 2018;289:688-697 https://doi.org/10.1148/radiol.2018180763
- Dou Q, Yu L, Chen H, Jin Y, Yang X, Qin J, et al. 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal 2017;41:40-54 https://doi.org/10.1016/j.media.2017.05.001
- Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoderdecoder with atrous separable convolution for semantic image segmentation. The European conference on computer vision (ECCV);2018 September 8-14;Munich, Germany
- Roth HR, Lu L, Seff A, Cherry KM, Hoffman J, Wang S, et al. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. Med Image Comput Comput Assist Interv 2014;17:520-527 https://doi.org/10.1007/978-3-319-10404-1_65
- Hashimoto T, Sugawara Y, Tamura S, Hasegawa K, Kishi Y, Kokudo N, et al. Estimation of standard liver volume in Japanese living liver donors. J Gastroenterol Hepatol 2006;21:1710-1713 https://doi.org/10.1111/j.1440-1746.2006.04433.x
- Serai SD, Obuchowski NA, Venkatesh SK, Sirlin CB, Miller FH, Ashton E, et al. Repeatability of MR elastography of liver: a meta-analysis. Radiology 2017;285:92-100 https://doi.org/10.1148/radiol.2017161398
- Saito A, Yamamoto S, Nawano S, Shimizu A. Automated liver segmentation from a postmortem CT scan based on a statistical shape model. Int J Comput Assist Radiol Surg 2017;12:205-221 https://doi.org/10.1007/s11548-016-1481-5
- Barnhart HX, Barboriak DP. Applications of the repeatability of quantitative imaging biomarkers: a review of statistical analysis of repeat data sets. Transl Oncol 2009;2:231-235 https://doi.org/10.1593/tlo.09268
- Prionas ND, Ray S, Boone JM. Volume assessment accuracy in computed tomography: a phantom study. J Appl Clin Med Phys 2010;11:3037
- Hori M, Suzuki K, Epstein ML, Baron RL. Computed tomography liver volumetry using 3-dimensional image data in living donor liver transplantation: effects of the slice thickness on the volume calculation. Liver Transpl 2011;17:1427-1436 https://doi.org/10.1002/lt.22419
- Gotra A, Chartrand G, Vu KN, Vandenbroucke-Menu F, Massicotte-Tisluck K, de Guise JA, et al. Comparison of MRIand CT-based semiautomated liver segmentation: a validation study. Abdom Radiol (NY) 2017;42:478-489 https://doi.org/10.1007/s00261-016-0912-7
- Suzuki K, Kohlbrenner R, Epstein ML, Obajuluwa AM, Xu J, Hori M. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms. Med Phys 2010;37:2159-2166 https://doi.org/10.1118/1.3395579
- Harris A, Kamishima T, Hao HY, Kato F, Omatsu T, Onodera Y, et al. Splenic volume measurements on computed tomography utilizing automatically contouring software and its relationship with age, gender, and anthropometric parameters. Eur J Radiol 2010;75:e97-e101 https://doi.org/10.1016/j.ejrad.2009.08.013
- Dello SA, Stoot JH, van Stiphout RS, Bloemen JG, Wigmore SJ, Dejong CH, et al. Prospective volumetric assessment of the liver on a personal computer by nonradiologists prior to partial hepatectomy. World J Surg 2011;35:386-392 https://doi.org/10.1007/s00268-010-0877-6