• Title/Summary/Keyword: Medical electron

Search Result 821, Processing Time 0.027 seconds

The Effects of Metal Plate loaded on TLD chip in 6 MV Photon and 6 MeV Electron Beams (6 MV 광자선과 6 MeV 전자선 하에서 TLD 기판 위에 얹힌 금속 박막의 효과)

  • Kim, Sookil;Byungnim Min
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.41-46
    • /
    • 1999
  • There is necessity for making a smaller and more sensitive detector in small field sizes. This report assesses the suitability of metal-loaded thermoluminescent dosimeters for this purpose. Measurements were performed in the 6 MV photon and 6 MeV electron beams of a medical linear accelerator with LiF thermoluminescence dosimeters (TLD-100) embedded in solid water phantom. TLD-100 chips(surface area 3.2 $\times$ 3.2 $\textrm{mm}^2$) loaded with a metal plate(Tin or gold respectively) were used to enhance dose readings to TLD-100. Surface dose was measured for field size 10 $\times$ 10 $\textrm{cm}^2$ and 100 em SSD. Measurements have been made of the enhanced signal intensity and good linearity for absorbed dose with each metal. Using a 1 mm each metal on TLD-l00 in the beam increased the surface dose to 14% and 56% respectively for 6MV photon. In the case of 6 MeV electron, gold plate enhanced the TL response to 13%, but there is no difference for tin plate. The specific dose response of TLD-100 with thin metal plate increases with electron concentration of metal film, this is most likely due to increased electron scattered from the additional material with electron density higher than TLD-100. This emphasizes the role of TL dosimeters with metal as amplified dosimeters for therapeutic high energy x-ray beams. Due to the enhanced dose reading of TLD-100 with metal plate, it could be possible to develop smaller TL dosimeter with high sensitivity.

  • PDF

Histochemical and Electron Microscopic Study on the Nerve Cells of the Pineal Body of Catfish, Parasilurus asotus (메기 송과체의 신경세포에 관한 조직화학 및 전자현미경적 연구)

  • Oh, Chang-Seok;Kim, Young-Woo;Kim, Baik-Yoon
    • Applied Microscopy
    • /
    • v.25 no.2
    • /
    • pp.1-10
    • /
    • 1995
  • This study was carried out to clarify the neuronal organization in pineal body of catfish. The pineal body was observed by acetylcholinesterase histochemistry and electron microscopy. The neuronal types observed in the pineal body of catfish were bipolar and multipolar cells. Multipolar cells were found throughout the pineal end vesicle and whole stalk, but bipolar cells only in the end vesicle and distal stalk. The pineal tract was formed by the long axons of these neurons. The neuronal clusters(pineal ganglia) were also observed in the end vesicle. In summary, the type of neurons in catfish pineal was different from that of other species, and the neuronal distribution differed depending on the region of pineal body. These results reflect the interspecific and regional differences of the pineal organization of fishes.

  • PDF

Electron Microscopic Observations on BHK-21 Cells Infected with Herpes Simplex Type 2 Virus (Herpes Simplex 2형 바이러스의 BHK-21 세포내에서의 전자현미경적 관찰)

  • Ko, Kwang-Kjune;Lee, Yun-Tai;Lee, Chong-Hoon
    • The Journal of the Korean Society for Microbiology
    • /
    • v.16 no.1
    • /
    • pp.71-82
    • /
    • 1981
  • An electron microscopic study was carried out on the morphogenesis of herpes simplex type 2 virus in BHK-21 cells BHK-21 cells was found susceptible to infection and replication of herpes simplex type 2 virus cytopathic effects of the herpes type appeared at approximately 1 day postinoculation. Foci consisting of rounded refractile cells and syncytia were observed. Projection of the nuclear membrane in the infected cells was also seen, Several infected cells showed a track-shaped structure which apparently consisted of multiple layered membranes of the nucleus.

  • PDF

Extended Huckel Calculations of the Effect of Sulfenyl, Sulfinyl and Sulfonyl Groups on the Reactivity of Halides in $S-N2$ Reactions (할라이드의 $S_N2$ 형 반응성에 미치는 술페닐, 술피닐 및 술포닐기의 효과에 대한 확장 Huckel 계산)

  • Ui Rak Kim;Kyu Yong Lee;Sun Ho Bai;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.3-7
    • /
    • 1974
  • Extended Huckel calculations have been carried out to study the effect of sulfenyl, sulfinyl and sulfonyl groups on the reactivity of halides in $S-N2$ reactions. Results indicate that the most reasonable reactivity index is that based on the Frontier electron for the bond formation process.

  • PDF

Dosimetry by Using EBT2 Film for Total Skin Electron Beam Therapy (TSET) (전신 피부 전자선 치료(TSET)에서 EBT2 필름을 사용한 선량측정)

  • Hwang, Ui-Jung;Rah, Jeong-Eun;Jeong, Ho-Jin;Ahn, Sung-Hwan;Kim, Dong-Wook;Lee, Sang-Yeob;Lim, Young-Gyung;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Park, Sung-Young;Pyo, Hong-Ryull;Chung, Weon-Kuu
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.60-69
    • /
    • 2010
  • For treatment of Total Skin Electron beam Therapy (TSET), measurement of dose at various conditions is need on the contrary to usual radiotherapy. When treating TSET with modified Stanford technique based on linear accelerator, the energy of treatment electron beam, the spatial dose distribution and the actual doses deposited on the surface of the patient were measured by using EBT2. The measured energy of the electron beam was agreed with the value that measured by ionization chamber, and the spatial dose distribution at the patient position and the doses at several point on the patient's skin could be easily measured by EBT2 film. The dose on the patient that was measured by EBT2 film showed good agreement with the data measured simultaneously by TLD. With the results of this study, it was proven that the EBT2 film can be one of the useful dosimeter for TSET.

Determination of Initial Beam Parameters of Varian 2100 CD Linac for Various Therapeutic Electrons Using PRIMO

  • Maskani, Reza;Tahmasebibirgani, Mohammad Javad;Hoseini-Ghahfarokhi, Mojtaba;Fatahiasl, Jafar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7795-7801
    • /
    • 2015
  • The aim of the present research was to establish primary characteristics of electron beams for a Varian 2100C/D linear accelerator with recently developed PRIMO Monte Carlo software and to verify relations between electron energy and dose distribution. To maintain conformity of simulated and measured dose curves within 1%/1mm, mean energy, Full Width at Half Maximum (FWHM) of energy and focal spot FWHM of initial beam were changed iteratively. Mean and most probable energies were extracted from validated phase spaces and compared with related empirical equation results. To explain the importance of correct estimation of primary energy on a clinical case, computed tomography images of a thorax phantom were imported in PRIMO. Dose distributions and dose volume histogram (DVH) curves were compared between validated and artificial cases with overestimated energy. Initial mean energies were obtained of 6.68, 9.73, 13.2 and 16.4 MeV for 6, 9, 12 and 15 nominal energies, respectively. Energy FWHM reduced with increase in energy. Three mm focal spot FWHM for 9 MeV and 4 mm for other energies made proper matches of simulated and measured profiles. In addition, the maximum difference of calculated mean electrons energy at the phantom surface with empirical equation was 2.2 percent. Finally, clear differences in DVH curves of validated and artificial energy were observed as heterogeneity indexes were 0.15 for 7.21 MeV and 0.25 for 6.68 MeV. The Monte Carlo model presented in PRIMO for Varian 2100 CD was precisely validated. IAEA polynomial equations estimated mean energy more accurately than a known linear one. Small displacement of R50 changed DVH curves and homogeneity indexes. PRIMO is a user-friendly software which has suitable capabilities to calculate dose distribution in water phantoms or computerized tomographic volumes accurately.

Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides

  • Kim, Sung-woo;Kwak, Jungwon;Cho, Byungchul;Song, Si Yeol;Lee, Sang-wook;Jeong, Chiyoung
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Creating individualized build-up material for superficial photon beam radiation therapy at irregular surface is complex with rice or commonly used flat shape bolus. In this study, we implemented a workflow using 3D printed patient specific bolus and describe our clinical experience. To provide better fitted build-up to irregular surface, the 3D printing technique was used. The PolyLactic Acid (PLA) which processed with nontoxic plant component was used for 3D printer filament material for clinical usage. The 3D printed bolus was designed using virtual bolus structure delineated on patient CT images. Dose distributions were generated from treatment plan for bolus assigned uniform relative electron density and bolus using relative electron density from CT image and compared to evaluate the inhomogeneity effect of bolus material. Pretreatment QA is performed to verify the relative electron density applied to bolus structure by gamma analysis. As an in-vivo dosimetry, Optically Stimulated Luminescent Dosimeters (OSLD) are used to measure the skin dose. The plan comparison result shows that discrepancies between the virtual bolus plan and printed bolus plan are negligible. (0.3% maximum dose difference and 0.2% mean dose difference). The dose distribution is evaluated with gamma method (2%, 2 mm) at the center of GTV and the passing rate was 99.6%. The OSLD measurement shows 0.3% to 2.1% higher than expected dose at patient treatment lesion. In this study, we treated Mycosis fungoides patient with patient specific bolus using 3D printing technique. The accuracy of treatment plan was verified by pretreatment QA and in-vivo dosimetry. The QA results and 4 month follow up result shows the radiation treatment using 3D printing bolus is feasible to treat irregular patient skin.

Use of Cylindrical Chambers as Substitutes for Parallel-Plate Chambers in Low-Energy Electron Dosimetry

  • Chun, Minsoo;An, Hyun Joon;Kang, Seong-Hee;Cho, Jin Dong;Park, Jong Min;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2018
  • Current dosimetry protocols recommend the use of parallel-plate chambers in electron dosimetry because the electron fluence perturbation can be effectively minimized. However, substitutable methods to calibrate and measure the electron output and energy with the widely used cylindrical chamber should be developed in case a parallel-plate chamber is unavailable. In this study, we measured the correction factors and absolute dose-to-water of electrons with energies of 4, 6, 9, 12, 16, and 20 MeV using Farmer-type and Roos chambers by varying the dose rates according to the AAPM TG-51 protocol. The ion recombination factor and absolute dose were found to be varied across the chamber types, energy, and dose rate, and these phenomena were remarkable at a low energy (4 MeV), which was in good agreement with literature. While the ion recombination factor showed a difference across chamber types of less than 0.4%, the absolute dose differences between them were largest at 4 MeV at approximately 1.5%. We therefore found that the absolute dose with respect to the dose rate was strongly influenced by ion-collection efficiency. Although more rigorous validation with other types of chambers and protocols should be performed, the outcome of the study shows the feasibility of replacing the parallel-plate chamber with the cylindrical chamber in electron dosimetry.