• Title/Summary/Keyword: Medical electron

Search Result 821, Processing Time 0.033 seconds

Study of Scatter Influence of kV-Conebeam CT Based Calculation for Pelvic Radiotherapy (골반 방사선 치료에서 산란이 kV-Conebeam CT 영상 기반의 선량계산에 미치는 영향에 대한 연구)

  • Yoon, KyoungJun;Kwak, Jungwon;Cho, Byungchul;Kim, YoungSeok;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • The accuracy and uniformity of CT numbers are the main causes of radiation dose calculation error. Especially, for the dose calculation based on kV-Cone Beam Computed Tomography (CBCT) image, the scatter affecting the CT number is known to be quite different by the object sizes, densities, exposure conditions, and so on. In this study, the scatter impact on the CBCT based dose calculation was evaluated to provide the optimal condition minimizing the error. The CBCT images was acquired under three scatter conditions ("Under-scatter", "Over-scatter", and "Full-scatter") by adjusting amount of scatter materials around a electron density phantom (CIRS062, Tissue Simulation Technology, Norfolk, VA, USA). The CT number uniformities of CBCT images for water-equivalent materials of the phantom were assessed, and the location dependency, either "inner" or "outer" parts of the phantom, was also evaluated. The electron density correction curves were derived from CBCT images of the electron density phantom in each scatter condition. The electron density correction curves were applied to calculate the CBCT based doses, which were compared with the dose based on Fan Beam Computed Tomography (FBCT). Also, 5 prostate IMRT cases were enrolled to assess the accuracy of dose based on CBCT images using gamma index analysis and relative dose differences. As the CT number histogram of phantom CBCT images for water equivalent materials was fitted with a gaussian function, the FHWM (146 HU) for "Full-scatter" condition was the smallest among the FHWM for the three conditions (685 HU for "under scatter" and 264 HU for "over scatter"). Also, the variance of CT numbers was the smallest for the same ingredients located in the center and periphery of the phantom in the "Full-scatter" condition. The dose distributions calculated with FBCT and CBCT images compared in a gamma index evaluation of 1%/3 mm criteria and in the dose difference. With the electron density correction acquired in the same scatter condition, the CBCT based dose calculations tended to be the most accurate. In 5 prostate cases in which the mean equivalent diameter was 27.2 cm, the averaged gamma pass rate was 98% and the dose difference confirmed to be less than 2% (average 0.2%, ranged from -1.3% to 1.6%) with the electron density correction of the "Full-scatter" condition. The accuracy of CBCT based dose calculation could be confirmed that closely related to the CT number uniformity and to the similarity of the scatter conditions for the electron density correction curve and CBCT image. In pelvic cases, the most accurate dose calculation was achievable in the application of the electron density curves of the "Full-scatter" condition.

Tissue Preparation with t-Butyl Alcohol Freeze-drying Method for Scanning Electron Microscopy: Application for Rat Liver (t-Butyl Alcohol 동결건조법을 이용한 흰쥐 간장의 주사전자현미경적 관찰)

  • Uhm, Chang-Sub;Park, Eun-Kyung;Park, Chang-Hyun
    • Applied Microscopy
    • /
    • v.28 no.3
    • /
    • pp.299-306
    • /
    • 1998
  • T-butyl alcohol (TBA) freeze-drying method originally designed by Inoue and Osadake (1989) was adopted to dry specimens for scanning electron microscopy and the results were compared with those dried using critical point dryer (CPD). Small pieces $(1\times1\times3mm)$ of liver of Sprague-Dawley rats were cut and fixed in 2% glutaraldehyde in 0.1 M sodium cacodylate buffer after anesthesia, and processed for scanning electron microscopy by several modifications of TBA freeze-drying methods and by the standard preparation method using CPD. The bile canaliculi and sinusoidal endothelial surface were observed. Tissue dehydrated with TBA before TBA freeze-drying preserved the structures best comparable to those prepared with CPD. This result suggests that combination of dehydration with TBA and TBA freeze-drying is a superior method to the original TBA freeze-drying method dehydrated with ethanol.

  • PDF

The Calculation of Energy Distributions for Clinical Electron Beams from Mono Energetic Depth dose Data (단일에너지 깊이선량률 자료에 의한 치료용 전자선의 에너지분포 계산)

  • 이정옥;정동혁
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2004
  • The energy distributions for clinically used electron beams from measured and calculated mono energetic depth dose values were calculated. The energy distributions having the minimum difference between the measured and reduced values of depth dose are determined by iterations based on least square method. The nominal energies of 6, 9, 12, 15 MeV clinical electron beams were examined. The Monte Carlo depth dose calculations with determined energy distributions were peformed to evaluate those distributions. In a comparison of the calculated and measured depth dose data, the standard errors are estimated within $\pm$ 3% from surface to R$_{80}$ depth and within $\pm$4% from the surface to near the range for all electron beams. This can be practically applied to determine the energy distributions for clinically used electron beams.

  • PDF

Calculation of Energy Spectra for 6 MeV Electron Beam of LINAC Using MCNPX (MCNPX를 이용한 선형가속기의 6 MeV 전자선에 대한 에너지분포 계산)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.224-231
    • /
    • 2006
  • The electron energy spectra for 6 MeV electron beam were calculated using a MCNPX code. The head of the linear accelerator (ML6M; Mitsubishi, Japan) was modelled for this study. The energy spectrum of the initial electron beam was assumed to be Gaussian and the mean energy was determined by evaluating the measured and calculated values of $R_{50}$ and dose profiles in air. The energy distributions for electrons and photons at the interested points in the head of the linear accelerator were calculated by appling the Initial beam parameters. The effect of contaminant photons on depth dose curves were estimated by the photon energy spectra at the end of the applicator.

  • PDF

Amperometric Immunosensor for Myeloperoxidase in Human Serum Based on a Multi-wall Carbon Nanotubes-Ionic Liquid-Cerium Dioxide Film-modified Electrode

  • Lu, Lingsong;Liu, Bei;Liu, Chenggui;Xie, Guoming
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3259-3264
    • /
    • 2010
  • A label-free amperometric immunosensor has been proposed for the detection of myeloperoxidase (MPO) in human serum. To fabricate such an immunosensor, a composite film consisting of N,N-dimethylformamide (DMF), multiwall carbon nanotubes (MWCNTs) and 1-ethyl-3-methyl imidazolium tetrafluoroborate ($EMIMBF_4$) suspension was initially formed on a glassy carbon electrode (GCE). Then cerium dioxide ($CeO_2$) dispersed by chitosan was coated on the GCE. After that, MPO antibodies (anti-MPO) were attached onto the nano$CeO_2$ surface. With a noncompetitive immunoassay format, the antibody-antigen complex formed between the immobilized anti-MPO and MPO in sample solution. The immunosensor was characterized by cyclic voltammetry, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The factors influencing the performance of the immunosensor were studied in detail. Under optimal conditions, the current change before and after the immunoreaction was proportional to MPO concentration in the range of 5 to $300\;ng\;mL^{-1}$ with a detection limit of $0.2\;ng\;mL^{-1}$.

Proteomic and Morphologic Evidence for Taurine-5-Bromosalicylaldehyde Schiff Base as an Efficient Anti-Mycobacterial Drug

  • Ding, Wenyong;Zhang, Houli;Xu, Yuefei;Ma, Li;Zhang, Wenli
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1221-1229
    • /
    • 2019
  • Mycobacterium tuberculosis, a causative pathogen of tuberculosis (TB), still threatens human health worldwide. To find a novel drug to eradicate this pathogen, we tested taurine-5-bromosalicylaldehyde Schiff base (TBSSB) as an innovative anti-mycobacterial drug using Mycobacterium smegmatis as a surrogate model for M. tuberculosis. We investigated the antimicrobial activity of TBSSB against M. smegmatis by plotting growth curves, examined the effect of TBSSB on biofilm formation, observed morphological changes by scanning electron microscopy and transmission electron microscopy, and detected differentially expressed proteins using two-dimensional gel electrophoresis coupled with mass spectrometry. TBSSB inhibited mycobacterial growth and biofilm formation, altered cell ultrastructure and intracellular content, and inhibited cell division. Furthermore, M. smegmatis adapted itself to TBSSB inhibition by regulating the metabolic pathways and enzymatic activities of the identified proteins. NDMA-dependent methanol dehydrogenase, NAD(P)H nitroreductase, and amidohydrolase AmiB1 appear to be pivotal factors to regulate the M. smegmatis survival under TBSSB. Our dataset reinforced the idea that Schiff base-taurine compounds have the potential to be developed as novel anti-mycobacterial drugs.

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

Numerical Calculation of the Deflected Path of Electrons through Water under External Magnetic Fields

  • Jeong, Dong-Hyeok;Kim, Jhin-Kee;Shin, Kyo-Chul;Kim, Ki-Hwan;Kim, Jeung-Kee;Oh, Young-Kee;Ji, Young-Hoo;Lee, Jeong-Ok;Kim, Seung-Kyu
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.71-71
    • /
    • 2003
  • The study on magnetic field combined radiation therapy, as a new technique to modify the dose distributions using external magnetic field, has been investigated. The goal of the study is to develop the techniques for dose localization, as a particle beam, from the strong magnetic fields. In this study, in order to study the principle of dose deposition in external fields, as a basic approach, we have calculated approximately the paths of traveling electrons in water under external magnetic fields with numerical methods. The calculations are performed for a primary particle by cumulating the steps which are defined as small path lengths which energy loss can be ignored. In this calculation, the energy loss and direction change for a step was calculated by using total stopping power and Lorentz force equation respectively. We have examined the deflected paths of the electron through water as a function of external magnetic field and incident electron s energy. Since we did not take account of the multiple scattering effects for electrons through water, there are errors in this calculation. However, from the results we can explain the principle of dose variation and dose focusing for electron beams under strong magnetic fields in water.

  • PDF

The Experimental Study of the Effective Point of Measurement for Cylindrical Ion Chamber -For Medical Electron Beams- (원통형 전리함의 유효 측정점에 관한 실험적 연구 -의료용 전자선을 중심으로-)

  • 이병용;최은경;장혜숙;홍석민;이명자;전하정
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.155-160
    • /
    • 1991
  • We have studied the effective point of measurement for cylindrical ion chamber in water phantom for medical electron beams. Markus parallel plate chamber water phantom are used for the measurement of depth dose to determine the depth of the effective point of measurement for various energies(for electron 6MeV, 9MeV, 12MeV, 16MeV, and 20MeV; Co-60; for photon 6MV, 15MV). Cylindrical ion chambes(PTW233643 with r=2.75mm, PR-05P with r=2mm, and PM30 wiht r=15mm are used for the measurement of depth dose by same mtethod and the values of d$\_$50/ and R$\_$p/ obtained by three cylindrical chambers were compared with those of a flat chamber. From this we could evaluate the effective measuring points of cylindrical ion chamber. The effective point of measurement was estimated as 0.4~0.6r shifted toward surface from the center of the chamber for electron beam, 0.3~0.7r for $\^$60/Co X-ray.

  • PDF