DOI QR코드

DOI QR Code

Amperometric Immunosensor for Myeloperoxidase in Human Serum Based on a Multi-wall Carbon Nanotubes-Ionic Liquid-Cerium Dioxide Film-modified Electrode

  • Lu, Lingsong (Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University) ;
  • Liu, Bei (Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University) ;
  • Liu, Chenggui (Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University) ;
  • Xie, Guoming (Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University)
  • Received : 2010.07.06
  • Accepted : 2010.09.14
  • Published : 2010.11.20

Abstract

A label-free amperometric immunosensor has been proposed for the detection of myeloperoxidase (MPO) in human serum. To fabricate such an immunosensor, a composite film consisting of N,N-dimethylformamide (DMF), multiwall carbon nanotubes (MWCNTs) and 1-ethyl-3-methyl imidazolium tetrafluoroborate ($EMIMBF_4$) suspension was initially formed on a glassy carbon electrode (GCE). Then cerium dioxide ($CeO_2$) dispersed by chitosan was coated on the GCE. After that, MPO antibodies (anti-MPO) were attached onto the nano$CeO_2$ surface. With a noncompetitive immunoassay format, the antibody-antigen complex formed between the immobilized anti-MPO and MPO in sample solution. The immunosensor was characterized by cyclic voltammetry, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The factors influencing the performance of the immunosensor were studied in detail. Under optimal conditions, the current change before and after the immunoreaction was proportional to MPO concentration in the range of 5 to $300\;ng\;mL^{-1}$ with a detection limit of $0.2\;ng\;mL^{-1}$.

Keywords

References

  1. Eiserich, J. P.; Baldus, S.; Brennan, M. L.; Ma, W. X.; Zhang, C. X.; Tousson, A.; Castro, L.; Lusis, A. J.; Aldons, J.; William, M. N.; White, C. R.; Freeman, B. A. Science 2002, 296, 2391. https://doi.org/10.1126/science.1106830
  2. Wang, Z. N.; Nicholls, S. J.; Rodriguez, E. R.; Kummu, O.; Horkko, S.; Barnard, J.; Reynolds, W. F.; Topol, E. J.; DiDonato, J. A.; Hazen, S. L. Nat. Med. 2007, 13, 1176. https://doi.org/10.1038/nm1637
  3. Meuwese, M. C.; Stroes, E. S. G.; Hazen, S. L. J. Am. Coll Cardiol. 2007, 50, 159. https://doi.org/10.1016/j.jacc.2007.03.033
  4. Morrow, D. A.; Sabatine, M. S.; Brennan, M. L.; de Lemos, J. A.; Murphy, S. A.; Ruff, C. T.; Rifai, N.; Cannon, C. P.; Hazen, S. L. European Heart Journal 2008, 29, 1096. https://doi.org/10.1093/eurheartj/ehn071
  5. Libby, P. Nat. 2002, 420, 868. https://doi.org/10.1038/nature01323
  6. Baldus, S.; Heeschen, C.; Meinertz, T. M.; Zeiher, A. M.; Eiserich, J. P.; Münzel, T.; Simoons, M. L.; Hamm, C. W. Circulation 2003, 108, 1440. https://doi.org/10.1161/01.CIR.0000090690.67322.51
  7. Brennan, M. L.; Penn, M. S.; Lente, F. V.; Nambi, V.; Shishehbor, M. H.; Aviles, R. J.; M, M. G.; Pepoy, M. L.; McErlean, E. S.; Topol, E. J.; Nissen, S. E.; Hazen, S. L. N. Engl. J. Med. 2003, 349, 1595. https://doi.org/10.1056/NEJMoa035003
  8. Tang, D.; Yuan, R.; Chai, Y. Anal. Chem. 2008, 80, 1582. https://doi.org/10.1021/ac702217m
  9. Fu, X. H.; Wang, J. Y.; Li, N.; Wang, L.; Pu, L. Microchim. Acta 2009, 165, 437. https://doi.org/10.1007/s00604-009-0159-x
  10. Zhang, T. T.; Yuan, R.; Chai, Y. Q.; Liu, K. G.; Ling, S. J. Microchim Acta 2009, 165, 53. https://doi.org/10.1007/s00604-008-0097-z
  11. Pandey, P.; Singh, S. P.; Arya, S. K.; Gupta, V.; Dutta, M.; Singh, S.; Malhotra, B. D. Langmuir 2007, 23, 3333. https://doi.org/10.1021/la062901c
  12. Pingarro, J. M,; Sedeno, P. Y. Electrochim. Acta 2008, 53, 5848. https://doi.org/10.1016/j.electacta.2008.03.005
  13. Tang, H.; Chen, J. H.; Yao, S. Z.; Nie, L. H.; Deng, G. H.; Kuang, Y. F. Anal. Biochem. 2004, 331, 89. https://doi.org/10.1016/j.ab.2004.05.005
  14. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nat. 2001, 412, 169. https://doi.org/10.1038/35084046
  15. Wei, A.; Sun, X. W.; Wang, J. X.; Lei, Y. C.; X, P.; Li, C. M.; Dong, Z. L.; Huang, W. Appl. Phys. Lett. 2006, 89, 123902. https://doi.org/10.1063/1.2356307
  16. Wang, J. X.; Sun, X. W.; Wei, A.; Lei, Y.; Cai, X. P.; Li, C. M.; Dong, Z. L. Appl. Phys. Lett. 2006, 88, 233106. https://doi.org/10.1063/1.2210078
  17. Sun, W.; Li, X. Q.; Liu, S. F.; Jiao, K. Bull. Korean Chem. Soc. 2009, 30, 582. https://doi.org/10.5012/bkcs.2009.30.3.582
  18. Wang, L. G.; Xu, J. J.; Chen, H. Y.; Fu, S. Z. Biosens. Bioelectron. 2009, 25, 791. https://doi.org/10.1016/j.bios.2009.08.027
  19. Ansari, A. A.; Kaushik, A.; Solanki, P. R.; Malhotra, B. D. Electrochem. Commun. 2008, 10, 1246. https://doi.org/10.1016/j.elecom.2008.06.003
  20. Ansari, A. A.; Solanki, P. R.; Malhotra, B. D. Appl. Phys. Lett. 2008, 92, 263901. https://doi.org/10.1063/1.2953686
  21. Xiao, X. L.; Luan, Q. F.; Yao, X.; Zhou, K. B. Biosens. Bioelectron. 2009, 24, 2447. https://doi.org/10.1016/j.bios.2008.12.020
  22. Mehta, A.; Patil, S.; Bang, H.; Cho, H. J.; Seal, S. Sens. Actuators, A 2007, 134, 146. https://doi.org/10.1016/j.sna.2006.05.028
  23. Kaushik, A.; Solanki, P. R.; Ansari, A. A.; Ahmad, S.; Malhotra, B. D. Nanotechnol. 2009, 20, 055105. https://doi.org/10.1088/0957-4484/20/5/055105
  24. Feng, K. J.; Yang, Y. H.; Wang, Z. J.; Jiang, J. H.; Shen, G. L.; Yu, R. Q. Talanta. 2006, 70, 561. https://doi.org/10.1016/j.talanta.2006.01.009
  25. Ansari, A. A.; Solanki, P. R.; Malhotra, B. D. J. Biotechnol. 2009, 142, 179. https://doi.org/10.1016/j.jbiotec.2009.04.005
  26. Islam, M.; Ferdousi, B.; Okajima, T.; Ohsaka, T. Eletrochem Commun. 2005, 7, 789. https://doi.org/10.1016/j.elecom.2005.04.037
  27. Lu, X.; Zhang, Q.; Zhang, L.; Li, J. Electrochem Commun. 2006, 8, 874. https://doi.org/10.1016/j.elecom.2006.03.026
  28. Zhang, W.; Yang, T.; Zhuang, X. M.; Guo, Z. Y.; Jiao, K. Biosens. Bioelectron. 2009, 24, 2417. https://doi.org/10.1016/j.bios.2008.12.024
  29. Aziz, A.; Yang, H. Bull. Korean Chem. Soc. 2007, 28, 1171. https://doi.org/10.5012/bkcs.2007.28.7.1171
  30. Yang, X. F.; Gan, T. Zheng, X. J.; Zhu, D. Z.; Wu, K. B. Bull. Korean Chem. Soc. 2008, 29, 1386. https://doi.org/10.5012/bkcs.2008.29.7.1386
  31. Kang, X. H.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. H. Biosens. Bioelectron. 2009, 25, 901. https://doi.org/10.1016/j.bios.2009.09.004
  32. Lee, C. A.; Tsai, Y. C. Sens. Actuators B 2009, 138, 518.
  33. Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Takigawa, T.; Ishii, N.; Aida, T. Science 2003, 300, 2072. https://doi.org/10.1126/science.1082289

Cited by

  1. Disposable electrochemical immunosensor for myeloperoxidase based on the indium tin oxide electrode modified with an ionic liquid composite film containing gold nanoparticles, poly(o-phenylenediamine) and carbon nanotubes vol.173, pp.3-4, 2011, https://doi.org/10.1007/s00604-011-0575-6
  2. Chronoamperometric Magneto Immunosensor for Myeloperoxidase Detection in Human Plasma Based on a Magnetic Switch Produced by 3D Laser Sintering vol.85, pp.19, 2013, https://doi.org/10.1021/ac401549d
  3. Carbon nanotube wiring for signal amplification of electrochemical magneto immunosensors: application to myeloperoxidase detection vol.406, pp.22, 2014, https://doi.org/10.1007/s00216-014-7954-x
  4. Biomarkers for infection: enzymes, microbes, and metabolites vol.99, pp.11, 2015, https://doi.org/10.1007/s00253-015-6637-7
  5. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis vol.17, pp.8, 2017, https://doi.org/10.3390/s17081919
  6. Review—New Generation Electrode Materials for Sensitive Detection vol.163, pp.3, 2016, https://doi.org/10.1149/2.0251603jes
  7. Improved electrochemical immunosensor for myeloperoxidase in human serum based on nanogold/cerium dioxide-BMIMPF6/L-Cysteine composite film vol.86, pp.2, 2010, https://doi.org/10.1016/j.colsurfb.2011.04.017
  8. Novel approach for a high-energy-density Li-air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations vol.2, pp.24, 2014, https://doi.org/10.1039/c4ta00834k
  9. Amperometric sandwich immunoassay for determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbon vol.186, pp.4, 2019, https://doi.org/10.1007/s00604-019-3359-z