• Title/Summary/Keyword: Medical device software

Search Result 117, Processing Time 0.024 seconds

Comparison of Classification Rules Regarding SaMD Between the Regulation EU 2017/745 and the Directive 93/42/EEC

  • Ryu, Gyuha;Lee, Jiyoon
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.277-286
    • /
    • 2021
  • The global market size of AI based SaMD for medical image in 2023 will be anticipated to reach around 620 billion won (518 million dollars). In order for Korean manufacturers to efficiently obtain CE marking for marketing in the EU countries, the paper is to introduce the recommendation and suggestion of how to reclassify SaMD based on classification rules of MDR because, after introducing the Regulation EU 2017/745, classification rules are quite modified and newly added compared to the Directive 93/42/EEC. In addition, the paper is to provide several rules of MDR that may be applicable to decide the classification of SaMD. Lastly, the paper is to examine and demonstrate various secondary data supported by qualitative data because the paper focuses on the suggestion and recommendation with a public trust on the basis of various secondary data conducted by the analysis of field data. In conclusion, the paper found that the previous classification of SaMD followed by the rule of MDD should be reclassified based on the Regulation EU 2017/745. Therefore, the suggestion and recommendation are useful for Korean manufacturers to comprehend the classification of SaMD for marketing in the EU countries.

Development of a Breath Control Training System for Breath-Hold Techniques and Respiratory-Gated Radiation Therapy

  • Hyung Jin Choun;Jung-in Kim;Jong Min Park;Jaeman Son
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.136-141
    • /
    • 2022
  • Purpose: This study aimed to develop a breath control training system for breath-hold technique and respiratory-gated radiation therapy wherein the patients can learn breath-hold techniques in their convenient environment. Methods: The breath control training system comprises a sensor device and software. The sensor device uses a loadcell sensor and an adjustable strap around the chest to acquire respiratory signals. The device connects via Bluetooth to a computer where the software is installed. The software visualizes the respiratory signal in near real-time with a graph. The developed system can signal patients through visual (software), auditory (buzzer), and tactile (vibrator) stimulation when breath-holding starts. A motion phantom was used to test the basic functions of the developed breath control training system. The relative standard deviation of the maxima of the emulated free breathing data was calculated. Moreover, a relative standard deviation of a breath-holding region was calculated for the simulated breath-holding data. Results: The average force of the maxima was 487.71 N, and the relative standard deviation was 4.8%, while the average force of the breath hold region was 398.5 N, and the relative standard deviation was 1.8%. The data acquired through the sensor was consistent with the motion created by the motion phantom. Conclusions: We have developed a breath control training system comprising a sensor device and software that allow patients to learn breath-hold techniques in their convenient environment.

Design and Implementation of Bioluminescence Signal Analysis Tool

  • Jeong, Hye-Jin;Lee, Byeong-Il;Hwang, Hae-Gil;Song, Soo-Min;Min, Jung-Joon;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1580-1587
    • /
    • 2006
  • The term molecular imaging can be broadly defined as the in vivo characterization and measurement of biologic processes at the cellular and molecular level. Optical imaging that has highly reproducibility and repetition used in molecular imaging research. In the bioluminescence imaging, animals carrying the luciferase gene are imaged with a cooled CCD(Charge-Coupled Device) camera to pick up the small number of photons transmitted through tissues. Molecular imaging analysis will allow us to observe the incipience and progression of the disease. But hardware device for molecular imaging and software for molecular image analysis were dependent on imports. In this paper, we suggest image processing methods and designed software for bioluminescence signal analysis. And we demonstrated high correlation(r=0.99) between our software's photon counts and commercial software's photon counts. ROI function and processing functions were accomplished without error. This study have the importance of the development software for bioluminescence image processing and analysis. And this study built the foundations for creative development of analysis methods. We expected this study lead the development of image technology.

  • PDF

The Telemedicine System based ECG Data using Bio-Signal Meter and Smart Device (생체신호 측정기와 스마트 디바이스를 활용한 심전도 데이터 기반의 원격진료 시스템)

  • Kim, Yi-Seul;Cho, Jinsoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.51-56
    • /
    • 2012
  • In this paper, we propose a telemedicine system based ECG data using a bio-signal meter and a smart device for treating faraway patients. This system is composed of a patch-shaped portable bio-signal meter, patient's smart device application, and doctor's PC software. Using these components, doctors and patients can do telemedicine. First, a patient measures his own ECG signal with a bio-signal meter and send the data to a doctor using a smart device application. Then, the doctor checks the ECG data, and make and send a diagnosis chart to web server. Likewise, doctors and patients can be offered a medical environment without time and space restraints. Applying this system to real medical system can improve the problem of low accessibility and efficiency and also can reduce medical expenses.

Application of the IoT Concept in the Field of Medical Devices: Development of a Prototype of a Mechanotherapeutic Simulator and Software for Its Control

  • Lasek, Mikhail Petrovich;Karmanov, Vladislav Nikolaevich;Makarov, Roman Vladimirovich;Makarov, Pavel Andreevich;Gryaznov, Dmitriy Yurievich;Ustyugov, Vladimir Aleksandrovich
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.63-66
    • /
    • 2022
  • The article discusses the application of the IoT concept in the sensitive field of medical devices on the example of a developed prototype of a mechanotherapeutic simulator. Mechanotherapy is a complex of therapeutic, preventive, and restorative exercises conducted using simulators, specially designed for developing movements in individual joints. Mechanotherapy is used for the early and painless restoration of joint mobility, to prevent complications associated with prolonged immobilization of the injured area of extremities. Using the mechanotherapy simulator allows developing the joint painlessly, which accelerates the metabolism in the injured area, and soft tissues are restored to normal. The article provides information about the electronic components that ensure the wireless operation of the device and describes in detail the applied software as well as the client application for a mobile device.

Development of Numerical Model of Electrode for Radiofrequency Catheter Ablation Considering Saline Irrigation and Temperature-controlled Radiofrequency System (온도 조절형 고주파 시스템 및 식염수 분사를 고려한 전극도자절제술용 전극의 수치 모델 개발)

  • Ahn, Jin-Woo;Kim, Young-Jin;Lee, Seung-A;Jung, Ha-Chul;Kim, Kyung-Ah;Cha, Eun-Jong;Moon, Jin-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.285-290
    • /
    • 2017
  • Radiofrequency catheter ablation is the interventional therapy that be employed to eliminate cardiac tissue caused by arrhythmias. During radiofrequency catheter ablation, The thrombus can occur at electrode tip if the temperature of tissue and electrode is excess $100^{\circ}C$. To prevent this phenomenon, we investigated numerical model of electrode for radiofrequency catheter ablation considering saline irrigation and temperature-controlled radiofrequency system. The numerical model is based on coupled electric-thermal-flow problem and solved by COMSOL Multiphysics software. The results of the models show that the dimensions of the thermal lesion are increased if the flow rate of the saline irrigation and the set temperature are increased. The surface width characterized to determine the thermal lesion isn't need to measure in temperature-controlled radiofrequency system due to convective heat transfer by saline irrigation at tissue-electrode interface.

Software Platform for Stability Assure of Sensor Network in u-Health Environment (유헬스 환경에서 센서네트워크의 안정성 보장을 위한 소프트웨어 플랫폼)

  • Jung, Min Woo;Cho, Jeonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.219-226
    • /
    • 2012
  • The rises of the life index quality together with the medical technology improvement lead to a longer life expectancy. Then a better health care program, especially for elderly, is needed. The common health problems facing those senior citizens are changed from acute diseases to chronic diseases, such as diabetes, hypertension. Then u-Health takes center stage in medical industry. Although u- Health medical device manufacturers have been improving their instruments, these instruments still rely on proprietary technologies without fixed platform. Even if the interface has been provided by the manufacturer, there is no widely-accepted uniform data model to access data of various u-Health devices. IEEE 11073 is a standard attempting to unify the interfaces of all medical devices. In this paper we have proposed a conversion software platform that assures interoperability among medical devices for ubiquitous sensor network. This module uses in order to develop a standard platform of medical system.

Electropulsegraph and Wave Classification Framework (Electropulsegraph 및 파형분류 프레임워크)

  • Park, JinSoo;Choi, Dong Hag;Min, Se Dong;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1388-1389
    • /
    • 2015
  • Electropulsegraphy is a medical device that was invented by an orient medical physician and a few engineers to help the physicians to diagnose patients in more systematic way by analyzing waveforms generated from the device. Data generated form the device has been collected for over several decades, and undergoes functional upgrades today. The device generates 33 waveforms that reflect the states of patients. As one of those upgrading efforts, we strive to develop an intelligent algorithm that makes the diagnostic process automatically, which was previously done manually for a long period of time. The logistic regression algorithm is used for our classification problems, which is one of those well-known algorithms for various classification problems such as character recognition systems. Out of the 33 waveforms, we only use 5 waveform data (Type1 toType5) as training data sets to estimate the parameters of the logistic regression. And the parameters are used to classify waveform inputs chosen at random.

Implementation of Dynamic Situation Authentication System for Accessing Medical Information (의료정보 접근을 위한 동적상황인증시스템의 구현)

  • Ham, Gyu-Sung;Seo, Own-jeong;Jung, Hoill;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.31-40
    • /
    • 2018
  • With the development of IT technology recently, medical information systems are being constructed in an integrated u-health environment through cloud services, IoT technologies, and mobile applications. These kinds of medical information systems should provide the medical staff with authorities to access patients' medical information for emergency status treatments or therapeutic purposes. Therefore, in the medical information systems, the reliable and prompt authentication processes are necessary to access the biometric information and the medical information of the patients in charge of the medical staff. However, medical information systems are accessing with simple and static user authentication mechanism using only medical ID / PWD in the present system environment. For this reason, in this paper, we suggest a dynamic situation authentication mechanism that provides transparency of medical information access including various authentication factors considering patient's emergency status condition and dynamic situation authentication system supporting it. Our dynamic Situation Authentication is a combination of user authentication and mobile device authentication, which includes various authentication factor attributes such as emergency status, role of medical staff, their working hours, and their working positions and so forth. We designed and implemented a dynamic situation authentication system including emergency status decision, dynamic situation authentication, and authentication support DB construction. Finally, in order to verify the serviceability of the suggested dynamic situation authentication system, the medical staffs download the mobile application from the medical information server to the medical staff's own mobile device together with the dynamic situation authentication process and the permission to access medical information to the patient and showed access to medical information.

Principles for evaluating the clinical implementation of novel digital healthcare devices (첨단 디지털 헬스케어 의료기기를 진료에 도입할 때 평가원칙)

  • Park, Seong Ho;Do, Kyung-Hyun;Choi, Joon-Il;Sim, Jung Suk;Yang, Dal Mo;Eo, Hong;Woo, Hyunsik;Lee, Jeong Min;Jung, Seung Eun;Oh, Joo Hyeong
    • Journal of the Korean Medical Association
    • /
    • v.61 no.12
    • /
    • pp.765-775
    • /
    • 2018
  • With growing interest in novel digital healthcare devices, such as artificial intelligence (AI) software for medical diagnosis and prediction, and their potential impacts on healthcare, discussions have taken place regarding the regulatory approval, coverage, and clinical implementation of these devices. Despite their potential, 'digital exceptionalism' (i.e., skipping the rigorous clinical validation of such digital tools) is creating significant concerns for patients and healthcare stakeholders. This white paper presents the positions of the Korean Society of Radiology, a leader in medical imaging and digital medicine, on the clinical validation, regulatory approval, coverage decisions, and clinical implementation of novel digital healthcare devices, especially AI software for medical diagnosis and prediction, and explains the scientific principles underlying those positions. Mere regulatory approval by the Food and Drug Administration of Korea, the United States, or other countries should be distinguished from coverage decisions and widespread clinical implementation, as regulatory approval only indicates that a digital tool is allowed for use in patients, not that the device is beneficial or recommended for patient care. Coverage or widespread clinical adoption of AI software tools should require a thorough clinical validation of safety, high accuracy proven by robust external validation, documented benefits for patient outcomes, and cost-effectiveness. The Korean Society of Radiology puts patients first when considering novel digital healthcare tools, and as an impartial professional organization that follows scientific principles and evidence, strives to provide correct information to the public, make reasonable policy suggestions, and build collaborative partnerships with industry and government for the good of our patients.