• Title/Summary/Keyword: Medical center

Search Result 24,794, Processing Time 0.049 seconds

A familial case with brachydactyly type C with a GDF5 mutation

  • Yeh, Hye Ryun;Lee, Beom Hee;Kim, Ja Hye;Cho, Ja Hyang;Kim, Gu-Hwan;Kim, Jae-Min;Choi, In-Hee;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.11 no.1
    • /
    • pp.27-30
    • /
    • 2014
  • Brachydactyly type C is a limb malformation characterized by shortening of the second, third, and fifth middle and/or proximal phalanges, but it has variable phenotypic expressivity. Mutations in the growth differentiation factor-5 (GDF5) gene cause isolated brachydactyly C. Herein, we report a familial case with isolated brachydactyly type C characterized by brachymesophalangy of both second and third digits, with a GDF5 missense mutation, and discuss the phenotypic variability of the condition. Identifying more cases with genetic confirmation will help elucidate the clinical and genetic characteristics of this condition in the Korean population.

Investigation of a Photothrombosis Inducing System for an Observation of Transient Variations in an in vivo Rat Brain

  • Oh, Sung Suk;Park, Hye Jin;Min, Han Sol;Kim, Sang Dong;Bae, Seung Kuk;Kim, Jun Sik;Ryu, Rae-Hyung;Kim, Jong Chul;Kim, Sang Hyun;Lee, Seong-jun;Kang, Bong Keun;Choi, Jong-ryul;Sohn, Jeong-woo
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.499-507
    • /
    • 2018
  • For the spatiotemporally aligned observation of photothrombosis induction and transient variations of in vivo brain stroke, we developed a novel photothrombosis inducing system compatible to a magnetic resonance imaging (MRI) system using nonmagnetic stereotaxic equipment. From the spatial point of view, the system provides a more reliable level of reproducibility of the photothrombosis in each brain. From the temporal point of view, from T1- and T2-weighted in vivo MR (magnetic resonance) images, the transient variations such as incidence, location, and size of the thrombosis are measured quantitatively. In addition, the final variation is observed in the ex vivo brain by TTC (Triphenyltetrazolium chloride) staining based on histological assay and utilized for the verification of the MR images. From the experimental result of the rat brain, the proposed system shows more reliable characteristics for transient variations of brain strokes.