DOI QR코드

DOI QR Code

Investigation of a Photothrombosis Inducing System for an Observation of Transient Variations in an in vivo Rat Brain

  • Oh, Sung Suk (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Park, Hye Jin (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Min, Han Sol (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Kim, Sang Dong (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Bae, Seung Kuk (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Kim, Jun Sik (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Ryu, Rae-Hyung (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Kim, Jong Chul (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Kim, Sang Hyun (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Lee, Seong-jun (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Kang, Bong Keun (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Choi, Jong-ryul (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Sohn, Jeong-woo (Department of Medical Science, Catholic Kwandong University, International St. Mary's Hospital)
  • Received : 2018.09.17
  • Accepted : 2018.11.15
  • Published : 2018.12.25

Abstract

For the spatiotemporally aligned observation of photothrombosis induction and transient variations of in vivo brain stroke, we developed a novel photothrombosis inducing system compatible to a magnetic resonance imaging (MRI) system using nonmagnetic stereotaxic equipment. From the spatial point of view, the system provides a more reliable level of reproducibility of the photothrombosis in each brain. From the temporal point of view, from T1- and T2-weighted in vivo MR (magnetic resonance) images, the transient variations such as incidence, location, and size of the thrombosis are measured quantitatively. In addition, the final variation is observed in the ex vivo brain by TTC (Triphenyltetrazolium chloride) staining based on histological assay and utilized for the verification of the MR images. From the experimental result of the rat brain, the proposed system shows more reliable characteristics for transient variations of brain strokes.

Keywords

KGHHD@_2018_v2n6_499_f0001.png 이미지

FIG. 1. (a) A schematic of a photothrombosis inducing system for precisely positioned magnetic resonance imaging. (b) A diagram of how a stereotaxic frame holding a rat moves to a knee coil in a magnetic resonance imaging system after a generation of brain damage by photothrombosis.

KGHHD@_2018_v2n6_499_f0002.png 이미지

FIG. 2. A schematic of procedures in generation of brain damage by photothrombosis, transient and non-invasive MR imaging, and histological identification of brain damages by TTC staining.

KGHHD@_2018_v2n6_499_f0003.png 이미지

FIG. 3. Transient T1- and T2-weighted magnetic resonance images of the brain in the rat acquired immediately (0), 24, 48, and 72 hours after the photothrombosis.

KGHHD@_2018_v2n6_499_f0004.png 이미지

FIG. 4. (a) Estimated of regions of manually segmented measurements of average intensities in magnetic resonance images (①: a photothrombosis induced region, ②: a non-induced region of the rat brain, ③: a background region). Average intensities of (b) T2-and (c) T1-weighted magnetic resonance images on photothrombosis induced (black), non-induced (red), and background (blue) regions. Each average intensity was determined by manually segmented measurements with a size of 1.56 × 1.56 mm2. An error bar in each bar represents the standard deviation for the intensity in the measurement area established.

KGHHD@_2018_v2n6_499_f0005.png 이미지

FIG. 5. Three-dimensional projected images of the rat brain after (a) 0 and (b) 24 hours of brain damage generation by the photothrombosis inducing system.

KGHHD@_2018_v2n6_499_f0006.png 이미지

FIG. 6. An overall photograph of the rat brain that was removed 72 hours after brain damage generation by photothrombosis and a result of histological confirmation by TTC staining and brain slicing.

References

  1. B. Furie and B. C. Furie, "Mechanisms of thrombus formation," New Eng. J. Med. 359, 938-949 (2008). https://doi.org/10.1056/NEJMra0801082
  2. T. H. Spaet, E. Gaynor, and M. B. Stemerman, "Thrombosis, atherosclerosis, and endothelium," Am. Heart J. 87, 661-668 (1974). https://doi.org/10.1016/0002-8703(74)90507-9
  3. G. Lippi, M. Franchini, and G. Targher, "Arterial thrombus formation in cardiovascular disease," Nat. Rev. Cardiol. 8, 502 (2011). https://doi.org/10.1038/nrcardio.2011.91
  4. F. Xie, X. Li, K. Sun, Y. Chu, H. Cao, N. Chen, W. Wang, M. Liu, W. Liu, and D. Mao, "An experimental study on drugs for improving blood circulation and removing blood stasis in treating mild chronic hepatic damage," J. Trandt. Chin. Med. 21, 225-231 (2001).
  5. S. Prasad, R. S. Kashyap, J. Y. Deopujari, H. J. Purohit, G. M. Taori, and H. F. Daginawala, "Development of an in vitro model to study clot lysis activity of thrombolytic drugs," Thromb. J. 4, 14 (2006).
  6. N. Korin, M. Kanapathipillai, B. D. Matthews, M. Crescente, A. Brill, T. Mammoto, K. Ghosh, S. Jurek, S. A. Bencherif, D. Bhatta, A. U. Coskun, C. L. Feldman, D. D. Wagner, and D. E. Ingber, "Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels," Science 337, 1453 (2012).
  7. Y. N. Zubkov, B. M. Nikiforov, and V. A. Shustin, "Balloon catheter technique for dilatation of constricted cerebral arteries after aneurysmal SAH," Acta Neurochir. 70, 65-79 (1984). https://doi.org/10.1007/BF01406044
  8. J. Schofer, M. Schlüter, A. H. Gershlick, W. Wijns, E. Garcia, E. Schampaert, and G. Breithardt, "Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blind, randomised controlled trial (E-SIRIUS)," Lancet 362, 1093-1099 (2003). https://doi.org/10.1016/S0140-6736(03)14462-5
  9. B. Kreft, H. Strunk, S. Flacke, M. Wolff, R. Conrad, J. Gieseke, D. Pauleit, R. Bachmann, A. Hirner, and H. H. Schild, "Detection of thrombosis in the portal venous system: comparison of contrast-enhanced MR angiography with intraarterial digital subtraction angiography," Radiology 216, 86-92 (2000). https://doi.org/10.1148/radiology.216.1.r00jl2386
  10. Z. A. Fayad, V. Fuster, K. Nikolaou, and C. Becker, "Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts," Circulation 106, 2026-2034 (2002). https://doi.org/10.1161/01.CIR.0000034392.34211.FC
  11. M. Dittmar, T. Spruss, G. Schuierer, and M. Horn, "External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats," Stroke 34, 2252-2257 (2003). https://doi.org/10.1161/01.STR.0000083625.54851.9A
  12. P. F. Bodary and D. T. Eitzman, "Animal models of thrombosis," Curr. Opin. Hematol. 16, 342-346 (2009). https://doi.org/10.1097/MOH.0b013e32832e9ddd
  13. F. Fluri, M. K. Schuhmann, and C. Kleinschnitz, "Animal models of ischemic stroke and their application in clinical research," Drug Des. Devel. Ther. 9, 3445-3454 (2015).
  14. H. Albadawi, A. A. Witting, Y. Pershad, A. Wallace, A. R. Fleck, P. Hoang, A. Khademhosseini, and R. Oklu, "Animal models of venous thrombosis," Cardiovasc. Diagn. Ther. 7, S197-S206 (2017). https://doi.org/10.21037/cdt.2017.08.10
  15. W. I. Rosenblum and F. El-Sabban, "Platelet aggregation in the cerebral microcirculation: effect of aspirin and other agents," Circ. Res. 40, 320-328 (1977). https://doi.org/10.1161/01.RES.40.3.320
  16. B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Ann. Neurol. 17, 497-504 (1985). https://doi.org/10.1002/ana.410170513
  17. H. Yao, H. Sugimori, K. Fukuda, J. Takada, H. Ooboshi, T. Kitazono, S. Ibayashi, and M. Iida, "Photothrombotic middle cerebral artery occlusion and reperfusion laser system in spontaneously hypertensive rats," Stroke 34, 2716-2721 (2003). https://doi.org/10.1161/01.STR.0000094730.38343.73
  18. V. Labat-gest and S. Tomasi, "Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies," J. Vis. Exp. 76, 50370 (2013).
  19. Q. Liu, Y. Li, H. Lu, and S. Tong, "Real-time high resolution laser speckle imaging of cerebral vascular changes in a rodent photothrombosis model," Biomed. Opt. Express 5, 1483-1493 (2014). https://doi.org/10.1364/BOE.5.001483
  20. A. M. Barth and I. Mody, "Changes in hippocampal neuronal activity during and after unilateral selective hippocampal ischemia in vivo," J. Neurosci. 31, 851-860 (2011). https://doi.org/10.1523/JNEUROSCI.5080-10.2011
  21. F. Fluri, M. K. Schuhmann, and C. Kleinschnitz, "Animal models of ischemic stroke and their application in clinical research," Drug Des. Devel. Ther. 9, 3445-3454 (2015).
  22. M. Schroeter, S. Jander, and G. Stoll, "Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses," J. Neurosci. Methods 117, 43-49 (2002). https://doi.org/10.1016/S0165-0270(02)00072-9
  23. S. K. Moon, M. Alaverdashvili, A. R. Cross, and I. Q. Whishaw, "Both compensation and recovery of skilled reaching following small photothrombotic stroke to motor cortex in the rat," Exp. Neurol. 218, 145-153 (2009). https://doi.org/10.1016/j.expneurol.2009.04.021
  24. A. Benedek, K. Moricz, Z. Juranyi, G. Gigler, G. Levay, L. G. Harsing, Jr., P. Matyus, G. Szenasi, and M. Albert, "Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats," Brain Res. 1116, 159-165 (2006). https://doi.org/10.1016/j.brainres.2006.07.123
  25. M. Kramer, J. Dang, F. Baertling, B. Denecke, T. Clarner, C. Kirsch, C. Beyer, and M. Kipp, "TTC staining of damaged brain areas after MCA occlusion in the rat does not constrict quantitative gene and protein analyses," J. Neurosci. Methods 187, 84-89 (2010). https://doi.org/10.1016/j.jneumeth.2009.12.020
  26. E. Busch, K. Krüger, P. R. Allegrini, C. M. Kerskens, M. L. Gyngell, M. Hoehn-Berlage, and K. A. Hossmann, "Reperfusion after thrombolytic therapy of embolic stroke in the rat: magnetic resonance and biochemical imaging," J. Cereb. Blood Flow Metab. 18, 407-418 (1998). https://doi.org/10.1097/00004647-199804000-00009
  27. U. Guerrini, L. Sironi, E. Tremoli, M. Cimino, B. Pollo, A. M. Calvio, R. Paoletti, and M. Asdente, "New insights into brain damage in stroke-prone rats: a nuclear magnetic imaging study," Stroke 33, 825-830 (2002). https://doi.org/10.1161/hs0302.104111
  28. J. B. Bertrand, J. B. Langlois, M. Bégou, J. Volle, P. Brun, T. d'Amato, M. Saoud, and M. F. Suaud-Chagny, "Longitudinal MRI monitoring of brain damage in the neonatal ventral hippocampal lesion rat model of schizophrenia," Hippocampus 20, 264-278 (2010).
  29. R. Uppal, I. Ay, G. Dai, Y. R. Kim, A. G. Sorensen, and P. Caravan, "Molecular MRI of intracranial thrombus in a rat ischemic stroke model," Stroke 41, 1271-1277 (2010). https://doi.org/10.1161/STROKEAHA.109.575662
  30. U. I. Tuor and M. Qiao, "Magnetic resonance imaging detection of multiple ischemic injury produced in an adult rat model of minor stroke followed by mild transient cerebral ischemia," MAGMA 30, 175-188 (2017). https://doi.org/10.1007/s10334-016-0597-5
  31. M.-C. Lee, C.-Y. Jin, H.-S. Kim, J.-H. Kim, M.-K. Kim, H.-I. Kim, Y.-J. Kim, Y.-J. Son, Y.-O. Kim, and Y.-J. Woo, "Stem cell dynamics in an experimental model of stroke," Chonnam Med. J. 47, 90-98 (2011). https://doi.org/10.4068/cmj.2011.47.2.90
  32. U. I. Tuor, Q. Deng, D. Rushforth, T. Foniko, and M. Qiao, "Model of minor stroke with mild peri-infarct ischemic injury," J. Neurosci. Methods 268, 56-65 (2016). https://doi.org/10.1016/j.jneumeth.2016.04.025
  33. K. C. Chan, I. Y. Zhou, S. S. Liu, Y. van der Merwe, S.-J. Fan, V. K. Hung, S. K. Chung, W. Wu, K. So, and E. X. Wu, "Longitudinal assessments of normal and perilesional tissues in focal brain ischemia and partial optic nerve injury with manganese-enhanced MRI," Sci. Rep. 7, 43124 (2017). https://doi.org/10.1038/srep43124
  34. A. Sigler, A. Goroshkov, and T. H. Murphy, "Hardware and methodology for targeting single brain arterioles for photothrombotic stroke on an upright microscope," J. Neurosci. Methods 170, 35-44 (2008). https://doi.org/10.1016/j.jneumeth.2007.12.015
  35. M. Alaverdashvili, P. G. Paterson, and M. P. Bradley, "Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model," J. Neurosci. Methods 247, 58-66 (2015). https://doi.org/10.1016/j.jneumeth.2015.03.029
  36. R. Weber, S. Wegener, P. Ramos-Cabrer, D. Wiedermann, and M. Hoehn, "MRI detection of macrophage activity after experimental stroke in rats: new indicators for late appearance of vascular degradation?," Magn. Reson. Med. 54, 59-66 (2005). https://doi.org/10.1002/mrm.20532
  37. S. J. Chang, J. H. Cherng, D. H. Wang, S. P. Yu, N. H. Liou, M. L. Hsu, "Transneuronal degeneration of thalamic nuclei following middle cerebral artery occlusion in rats," Biomed. Res. Int. 2016, 3819052 (2016).
  38. M. Misir, M. Renic, M. Mihalj, S. Novak S, and I. Drenjancevic, "Is shorter transient middle cerebral artery occlusion (t-MCAO) duration better in stroke experiments on diabetic female Sprague Dawely rats?," Brain Inj. 30, 1390-1396 (2016). https://doi.org/10.1080/02699052.2016.1195518
  39. X. B. Li, M. X. Ding, C. L. Ding, L. L. Li, J. Feng, and X. J. Yu, "Toll-Like receptor 4 promotes the phosphorylation of CRMP2 via the activation of Rho-kinase in MCAO rats," Mol. Med. Rep. 18, 342-348 (2018).
  40. H. Lu, Y. Li, B. Bo, L. Yuan, X. Lu, H. Li, and S. Tong, "Hemodynamic effects of intraoperative anesthetics administration in photothrombotic stroke model: a study using laser speckle imaging," BMC Neurosci. 18, 10 (2017). https://doi.org/10.1186/s12868-016-0327-y
  41. C. Qian, P. C. Li, Y. Jiao, H. H. Yao, Y. C. Chen, J. Yang, J. Ding, X. Y. Yang, and G. J. Teng, "Precise characterization of the penumbra revealed by MRI: a modified photothrombotic stroke model study," PLoS One 11, e0153756 (2016). https://doi.org/10.1371/journal.pone.0153756
  42. M. Tanaka, Y. Ishihara, S. Mizuno, A. Ishida, C. F. Vogel, M. Tsuji, T. Yamazaki, and K. Itoh, "Progression of vasogenic edema induced by activated microglia under permanent middle cerebral artery occlusion," Biochem. Biophys. Res. Commun. 496, 582-587 (2018). https://doi.org/10.1016/j.bbrc.2018.01.094
  43. Y. Yang, K. Gao, Z. Hu, W. Li, H. Davies, S. Ling, J. A. Rudd, and M. Fang, "Autophagy upregulation and apoptosis downregulation in DAHP and Triptolide treated cerebral ischemia," Mediators Inflamm. 2015, 120198 (2015).
  44. J. Yan, B. Zhou, S. Taheri, and H. Shi, "Differential effects of HIF-1 inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke," PLoS One 6, e27798 (2011). https://doi.org/10.1371/journal.pone.0027798
  45. P. H. Pevsner, J. W. Eichenbaum, D. C. Miller, G. Pivawer, K. D. Eichenbaum, A. Stern, K. L. Zakian, and J. A. Koutcher, "A photothrombotic model of small early ischemic infarcts in the rat brain with histologic and MRI correlation," J. Pharmacol. Toxicol. Methods 45, 227-233 (2001). https://doi.org/10.1016/S1056-8719(01)00153-8
  46. D. Lanens, M. Spanoghe, J. Van Audekerke, A. Oksendal, A. Van der Linden, and R. Dommisse, "Complementary use of T2-weighted and postcontrast T1- and T2*-weighted imaging to distinguish sites of reversible and irreversible brain damage in focal ischemic lesions in the rat brain," Magn. Reson. Imaging 13, 185-192 (1995). https://doi.org/10.1016/0730-725X(94)00106-D
  47. J.-H. Kim, "T1-, T2-weighted, and FLAIR imaging: clinical application," J. Korean Soc. Magn. Reson. Med. 13, 9-14 (2009).
  48. R. Brown, Y.-C. N. Cheng, M. Haacke, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design, Second Edition (John Wiley & Sons, Inc., Hoboken, NJ, United States, 2014).
  49. R. H. Hashemi, W. G. Bradley, and C. J. L. Philadelphia, MRI: The Basics, Third Edition (Lippincott, Williams & Wilkins, Philadelphia, PA, United States, 2010).
  50. P. Heo, J. H. Seo, S. D. Han, Y. Ryu, J. D. Byun, K. N. Kim, and J. H. Lee, "Multi-port-driven birdcage coil for multiple-mouse MR imaging at 7 T," Scanning 38, 747-756 (2016). https://doi.org/10.1002/sca.21324
  51. W. Chen, J. You, X. Gu, C. Du, and Y. Pan, "High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging," Sci. Rep. 6, 38786 (2016). https://doi.org/10.1038/srep38786
  52. L. J. Rich and M. Seshadri, "Photoacoustic imaging of vascular hemodynamics: validation with blood oxygenation level-dependent MR imaging," Radiology 275, 110-118 (2015). https://doi.org/10.1148/radiol.14140654
  53. C. Yeo, H. Kim, and C. Song, "Cerebral blood flow monitoring by diffuse speckle contrast analysis during MCAO surgery in the rat," Curr. Opt. Photon. 1, 433-439 (2017).
  54. V. Pinskiy, J. Jones, A. S. Tolpygo, N. Franciotti, K. Weber, and P. P. Mitra, "High-throughput method of whole-brain sectioning, using the tape-transfer technique," PLoS One 10, e0102363 (2015). https://doi.org/10.1371/journal.pone.0102363
  55. L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, "Label-free photoacoustic tomography of whole mouse brain structures ex vivo," Neurophotonics 3, 035001 (2016). https://doi.org/10.1117/1.NPh.3.3.035001
  56. S. P. Amato, F. Pan, J. Schwartz, and T. M. Ragan, "Whole brain imaging with serial two-photon tomography," Front. Neuroanat. 10, 31 (2016).
  57. S. Ikeda, K. Harada, Ohwatashi, Y. Kamikawa, A. Yoshida, and K. Kawahira, "A new non-human primate model of photochemically induced cerebral infarction," PLoS One 8, e60037 (2013). https://doi.org/10.1371/journal.pone.0060037
  58. J. Xu, H. Ruan, Y. Liu, H. Zhou, and C. Yang, "Focusing light through scattering media by transmission matrix inversion," Opt. Express 25, 27234-27246 (2017). https://doi.org/10.1364/OE.25.027234
  59. R. Horisaki, R. Takagi, and J. Tanida, "Learning-based focusing through scattering media," Appl. Opt. 56, 4358-4362 (2017). https://doi.org/10.1364/AO.56.004358
  60. J. Yoon, M. Lee, K. Lee, N. Kim, J. M. Kim, J. Park, H. Yu, C. Choi, W. D. Heo, and Y. Park, "Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping," Sci. Rep. 5, 13289 (2015). https://doi.org/10.1038/srep13289
  61. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, "Focusing through dynamic tissue with millisecond digital optical phase conjugation," Optica 2, 728-735 (2015). https://doi.org/10.1364/OPTICA.2.000728
  62. P. Lai, Y. Suzuki, X. Xu, and L. V. Wang, "Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media," Laser Phys. Lett. 10, 075604 (2013). https://doi.org/10.1088/1612-2011/10/7/075604
  63. I. M. Vellekoop and A. P. Mosk, "Focusing coherent light through opaque strongly scattering media," Opt. Lett. 32, 2309-2311 (2007). https://doi.org/10.1364/OL.32.002309