International journal of advanced smart convergence
/
v.13
no.1
/
pp.180-184
/
2024
Since COVID-19, many foreign tourists have visited Korea for medical tourism. When statistical data were checked from 2022, after COVID-19, the number of foreign patients visiting Korea for two years was 24.8 million, an increase of 70.1% from 2020. It was confirmed that it has achieved a 50% level compared to 2019 (Statistics Office, 2023). Therefore, to create a development plan by linking medical tourism and wellness tourism, the purpose of this study is to find the link between medical tourism and wellness tourism as big data and present a development plan. In this research method, medical tourism, and wellness tourism for two years from 2022 to 2023 from the post-COVID period as big data are set as central keywords to compare text data to find common points. When analyzing wellness tourism and medical tourism, it was confirmed that most wellness tourism had a greater frequency than medical tourism. This confirmed that wellness tourism occupies a larger pie than medical tourism. As a result, when checking the word frequency, it was confirmed that wellness tourism and medical tourism share a lot as complex tourism products, and when checking 2-gram, to attract many medical tourists, it is necessary to combine medical tourism clusters and wellness tourism according to each other's characteristics among local governments.
Health care big data is thought to be a promising field of interest for disease prediction, providing the basis of medical treatment and comparing effectiveness of different treatments. Korean government has begun an effort on releasing public health big data to improve the quality and safety of medical care and to provide information to health care professionals. By studying population based big data, interesting outcomes are expected in many aspects. To initiate research using health care big data, it is crucial to understand the characteristics of the data. In this review, we analyzed cases from inside and outside the country using clinical data registry. Based on successful cases, we suggest research method for evidence-based Korean medicine. This will provide better understanding about health care big data and necessity of Korean medicine data registry network.
Today's rapidly developing health technology is accumulating vast amounts of data through medical devices based on the Internet of Things in addition to data generated in hospitals. The collected data is a raw material that can create a variety of values, but our society lacks legal and institutional mechanisms to support medical Big Data. Therefore, in this study, we looked at four major factors that hinder the use of medical Big Data to find ways to enhance use of the Big Data based healthcare industry, and also derived implications for expanding domestic medical Big Data by identifying foreign policies and technological trends. As a result of the study, it was concluded that it is necessary to improve the regulatory system that satisfies the security and usability of healthcare Big Data as well as establish Big Data governance. For this, it is proposed to refer to the Big Data De-identification Guidelines adopted by the United States and the United Kingdom to reorganize the regulatory system. In the future, it is expected that it will be necessary to have a study that has measures of the conclusions and implications of this study and to supplement the institutional needs to play a positive role in the use of medical Big Data.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.3
/
pp.974-992
/
2021
Recently, the healthcare field has undergone rapid changes owing to the accumulation of health big data and the development of machine learning. Data mining research in the field of healthcare has different characteristics from those of other data analyses, such as the structural complexity of the medical data, requirement for medical expertise, and security of personal medical information. Various methods have been implemented to address these issues, including the machine learning model and cloud platform. However, the machine learning model presents the problem of opaque result interpretation, and the cloud platform requires more in-depth research on security and efficiency. To address these issues, this paper presents a recent technology for Internet-of-Things-based (IoT-based) health big data processing. We present a cloud-based IoT health platform and health big data processing technology that reduces the medical data management costs and enhances safety. We also present a data mining technology for health-risk prediction, which is the core of healthcare. Finally, we propose a study using explainable artificial intelligence that enhances the reliability and transparency of the decision-making system, which is called the black box model owing to its lack of transparency.
Conducting AI-based fusion business due to the increment of ICT fusion medical device has been expanded. In addition, AI-based medical devices help change existing medical system on treatment into the paradigm of customized treatment such as preliminary diagnosis and prevention. It will be generally promoted to the change of medical device industry. Although the current demand forecasting of medical biotechnology commercialization is based on the method of Delphi and AHP, there is a problem that it is difficult to have a generalization due to fluctuation results according to a pool of participants. Therefore, the purpose of the paper is to predict demand forecasting for identifying promising technology based on building up big data in medical biotechnology. The development method is to employ candidate technologies of keywords extracted from SCOPUS and to use word2vec for drawing analysis indicator, technological distance similarity, and recommended technological similarity of top-level items in order to achieve a reasonable result. In addition, the method builds up academic big data for 5 years (2016-2020) in order to commercialize technology excavation on demand perspective. Lastly, the paper employs global data studies in order to develop domestic and international demand for technology excavation in the medical biotechnology field.
Due to rapid development of medical information, a huge amount of information is being accumulated. Desires to conduct clinical researches by using this information are increasing, and medical institutions are encountering problems of aging society and drastic increase of medical expenses. Utilization of Big Data as an alternative is now being emphasized. The purpose of this study is to examine informatization of medical institutions and suggest political implications for Big Data utilization plans. Data was collected through literature searches and interviews with medical information professionals of medical institutions, from September to November, 2013, for four months. As a result of the study, it could be found that the hospital information system is improving from patient management and administration to researches and information strategies. Thus, national supports for medical expense reduction as well as fostering professional manpower should be provided, considering establishment of the system for utilization of Big Data and efficient application of unstructured data.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.728-731
/
2014
Today, the quality of medical service has become a major concern because that sustainable development of IT technology and extending people's life expectancy. This paper, it is used as a tool for the medical information quality management that analyze tweets big data form generated by individual's daily. The result of the analyze big data offers improvement medical information based evidence based medicine. Also it has been possible for a trace observation of chronic disease and can reduce additional other complications of patients. Therefore, effective treatment of disease and prevention is possible.
The interaction of mating pheromone and pheromone receptor from the B mating-type locus is the first step in the activation of the mushroom mating signal transduction pathway. The B mating-type locus of Lentinula edodes is composed of Bα and Bβ subloci, each of which contains genes for mating pheromone and pheromone receptor. Allelic variations in both subloci generate multiple B mating-types through which L. edodes maintains genetic diversity. In addition to the B mating-type locus, our genomic sequence analysis revealed the presence of a novel chromosomal locus 43.3 kb away from the B mating-type locus, containing genes for a pair of mating pheromones (PHBN1 and PHBN2) and a pheromone receptor (RCBN). The new locus (Bα-N) was homologous to the Bα sublocus, but unlike the multiallelic Bα sublocus, it was highly conserved across the wild and cultivated strains. The interactions of RcbN with various mating pheromones from the B and Bα-N mating-type loci were investigated using yeast model that replaced endogenous yeast mating pheromone receptor STE2 with RCBN. The yeast mating signal transduction pathway was only activated in the presence of PHBN1 or PHBN2 in the RcbN producing yeast, indicating that RcbN interacts with self-pheromones (PHBN1 and PHBN2), not with pheromones from the B mating-type locus. The biological function of the Bα-N locus was suggested to control the expression of A mating-type genes, as evidenced by the increased expression of two A-genes HD1 and HD2 upon the treatment of synthetic PHBN1 and PHBN2 peptides to the monokaryotic strain of L. edodes.
Recently, with the development of smart technology, in medical information platform, patient's biometric data is measured in real time and accumulated into database, and it is possible to determine the patient's emergency situations. Medical staff can easily access patient information after simple authentication using a mobile terminal. However, in accessing medical information using the mobile terminal, it is necessary to study authentication in consideration of the patient situations and mobile terminal. In this paper, we studied on medical information platforms based on big data processing and edge computing for supporting automatic authentication in emergency situations. The automatic authentication system that we had studied is an authentication system that simultaneously performs user authentication and mobile terminal authentication in emergency situations, and grants upper-level access rights to certified medical staff and mobile terminal. Big data processing and analysis techniques were applied to the proposed platform in order to determine emergency situations in consideration of patient conditions such as high blood pressure and diabetes. To quickly determine the patient's emergency situations, edge computing was placed in front of the medical information server so that the edge computing determine patient's situations instead of the medical information server. The medical information server derived emergency situation decision values using the input patient's information and accumulated biometric data, and transmit them to the edge computing to determine patient-customized emergency situation. In conclusion, the proposed medical information platform considers the patient's conditions and determine quick emergency situations through big data processing and edge computing, and enables rapid authentication in emergency situations through automatic authentication, and protects patient's information by granting access rights according to the patient situations and the role of the medical staff.
Big data technologies are increasing the need for big data in many areas of the world. Recently, the health care industry has become increasingly aware of the importance of disease and health care services, as it has become increasingly immune to prevention and health care. To do this, we need a Big data system to collect and analyze the personal biometric data. In this paper, we design the biometric big data system using low cost wearable device. We collect basic biometric data, such as heart rate, step count and physical activity from Mi Band, and store the collected biometric data into MongoDB. Based on the results of this study, it is possible to build a big data system that can be used in actual medical environment by using Hadoop etc. and to use it in real medical service in connection with various wearable devices for medical information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.