• Title/Summary/Keyword: Medical Image Segmentation

Search Result 259, Processing Time 0.032 seconds

Layer Segmentation of Retinal OCT Images using Deep Convolutional Encoder-Decoder Network (딥 컨볼루셔널 인코더-디코더 네트워크를 이용한 망막 OCT 영상의 층 분할)

  • Kwon, Oh-Heum;Song, Min-Gyu;Song, Ha-Joo;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1269-1279
    • /
    • 2019
  • In medical image analysis, segmentation is considered as a vital process since it partitions an image into coherent parts and extracts interesting objects from the image. In this paper, we consider automatic segmentations of OCT retinal images to find six layer boundaries using convolutional neural networks. Segmenting retinal images by layer boundaries is very important in diagnosing and predicting progress of eye diseases including diabetic retinopathy, glaucoma, and AMD (age-related macular degeneration). We applied well-known CNN architecture for general image segmentation, called Segnet, U-net, and CNN-S into this problem. We also proposed a shortest path-based algorithm for finding the layer boundaries from the outputs of Segnet and U-net. We analysed their performance on public OCT image data set. The experimental results show that the Segnet combined with the proposed shortest path-based boundary finding algorithm outperforms other two networks.

Segmentation by Contour Following Method with Directional Angle

  • Na, Cheol-Hun;Kim, Su-Yeong;Kang, Seong-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.874-877
    • /
    • 2012
  • This paper proposes the new method based on contour following method with directional angle to segment the cell into the nuclei. The object image was the Thyroid Gland cell image that was diagnosed as normal and abnormal(two types of abnormal : follicular neoplastic cell, and papillary neoplastic cell), respectively. The nuclei were successfully diagnosed as normal and abnormal. this paper, improved method of digital image analysis required in basic medical science for diagnosis of cells was proposed. The object image was the Thyroid Gland cell image with difference of chromatin patterns. To segment the cell nucleus from background, the region segmentation algorithm by edge tracing was proposed. And feature parameter was obtained from discrete Fourier transformation of image. After construct a feature sample group of each cells, experiment of discrimination was executed with any verification cells. As a result of experiment using features proposed in this paper, get a better segmentation rate(70-90%) than previously reported papers, and this method give shape to get objectivity and fixed quantity in diagnosis of cells. The methods described in this paper be used immediately for discrimination of neoplastic cells.

  • PDF

Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography

  • Hyo Jung Park;Yongbin Shin;Jisuk Park;Hyosang Kim;In Seob Lee;Dong-Woo Seo;Jimi Huh;Tae Young Lee;TaeYong Park;Jeongjin Lee;Kyung Won Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.1
    • /
    • pp.88-100
    • /
    • 2020
  • Objective: We aimed to develop and validate a deep learning system for fully automated segmentation of abdominal muscle and fat areas on computed tomography (CT) images. Materials and Methods: A fully convolutional network-based segmentation system was developed using a training dataset of 883 CT scans from 467 subjects. Axial CT images obtained at the inferior endplate level of the 3rd lumbar vertebra were used for the analysis. Manually drawn segmentation maps of the skeletal muscle, visceral fat, and subcutaneous fat were created to serve as ground truth data. The performance of the fully convolutional network-based segmentation system was evaluated using the Dice similarity coefficient and cross-sectional area error, for both a separate internal validation dataset (426 CT scans from 308 subjects) and an external validation dataset (171 CT scans from 171 subjects from two outside hospitals). Results: The mean Dice similarity coefficients for muscle, subcutaneous fat, and visceral fat were high for both the internal (0.96, 0.97, and 0.97, respectively) and external (0.97, 0.97, and 0.97, respectively) validation datasets, while the mean cross-sectional area errors for muscle, subcutaneous fat, and visceral fat were low for both internal (2.1%, 3.8%, and 1.8%, respectively) and external (2.7%, 4.6%, and 2.3%, respectively) validation datasets. Conclusion: The fully convolutional network-based segmentation system exhibited high performance and accuracy in the automatic segmentation of abdominal muscle and fat on CT images.

Automatic Extraction of Liver Region from Medical Images by Using an MFUnet

  • Vi, Vo Thi Tuong;Oh, A-Ran;Lee, Guee-Sang;Yang, Hyung-Jeong;Kim, Soo-Hyung
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.59-70
    • /
    • 2020
  • This paper presents a fully automatic tool to recognize the liver region from CT images based on a deep learning model, namely Multiple Filter U-net, MFUnet. The advantages of both U-net and Multiple Filters were utilized to construct an autoencoder model, called MFUnet for segmenting the liver region from computed tomograph. The MFUnet architecture includes the autoencoding model which is used for regenerating the liver region, the backbone model for extracting features which is trained on ImageNet, and the predicting model used for liver segmentation. The LiTS dataset and Chaos dataset were used for the evaluation of our research. This result shows that the integration of Multiple Filter to U-net improves the performance of liver segmentation and it opens up many research directions in medical imaging processing field.

A Study on Segmentation of Uterine Cervical Pap-Smears Images Using Neural Networks (신경 회로망을 이용한 자궁 경부 세포진 영상의 영역 분할에 관한 연구)

  • 김선아;김백섭
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.231-239
    • /
    • 2001
  • This paper proposes a region segmenting method for the Pap-smear image. The proposed method uses a pixel classifier based on neural network, which consists of four stages : preprocessing, feature extraction, region segmentation and postprocessing. In the preprocessing stage, brightness value is normalized by histogram stretching. In the feature extraction stage, total 36 features are extracted from $3{\times}3$ or $5{\times}5$ window. In the region segmentation stage, each pixel which is associated with 36 features, is classified into 3 groups : nucleus, cytoplasm and background. The backpropagation network is used for classification. In the postprocessing stage, the pixel, which have been rejected by the above classifier, are re-classified by the relaxation algorithm. It has been shown experimentally that the proposed method finds the nucleus region accurately and it can find the cytoplasm region too.

  • PDF

Developments of Semi-Automatic Vertebra Bone Segmentation Tool using Valley Tracking Deformable Model (계곡 추적 Deformable Model을 이용한 반자동 척추뼈 분할 도구의 개발)

  • Kim, Yie-Bin;Kim, Dong-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.791-797
    • /
    • 2007
  • This paper proposes a semiautomatic vertebra segmentation method that overcomes limitations of both manual segmentation requiring tedious user interactions and fully automatic segmentation that is sensitive to initial conditions. The proposed method extracts fence surfaces between vertebrae, and segments a vertebra using fence-limited region growing. A fence surface is generated by a deformable model utilizing valley information in a valley emphasized Gaussian image. Fence-limited region growing segments a vertebra using gray value homogeneity and fence surfaces acting as barriers. The proposed method has been applied to ten patient data sets, and produced promising results accurately and efficiently with minimal user interaction.

Implementation of 2D Snake Model-based Segmentation on Corpus Callosum

  • Shidaifat, Ala'a ddin Al;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1412-1417
    • /
    • 2014
  • The corpus callosum is the largest part of the brain, which is related to many neurological diseases. Snake model or active contour model is widely used in medical image processing field, especially image segmentation they look into the nearby edge, localizing them accurately. In this paper, corpus callosum segmentation using the snake model, is proposed. We tested a snake model on brain MRI. Then we compared the result with an active shape approach and found that snake model had better segmentation accuracy also faster than active shape approach.

Segmentation of MR Brain Image and Automatic Lesion Detection using Symmetry (뇌 자기공명영상의 분할 및 대칭성을 이용한 자동적인 병변인식)

  • 윤옥경;곽동민;김헌순;오상근;이성기
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.149-154
    • /
    • 1999
  • In anatomical aspects, magnetic resonance image offers more accurate information than other medical images such as X ray, ultrasonic and CT images. This paper introduces a method that segments and detects lesion for 2 dimensional axial MR brain images automatically. Image segmentation process consists of 2 stages. First stage extracts cerebrum region using thresholding and morphology. In the second stage, white matter, gray matter and cerebrospinal fluid in the cerebrum are extracted using FCM, We could improve processing time as removing uninterested region. Finally symmetry measure and anatomical Knowledge are used to detect lesion.

  • PDF

A Novel Whale Optimized TGV-FCMS Segmentation with Modified LSTM Classification for Endometrium Cancer Prediction

  • T. Satya Kiranmai;P.V.Lakshmi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.53-64
    • /
    • 2023
  • Early detection of endometrial carcinoma in uterus is essential for effective treatment. Endometrial carcinoma is the worst kind of endometrium cancer among the others since it is considerably more likely to affect the additional parts of the body if not detected and treated early. Non-invasive medical computer vision, also known as medical image processing, is becoming increasingly essential in the clinical diagnosis of various diseases. Such techniques provide a tool for automatic image processing, allowing for an accurate and timely assessment of the lesion. One of the most difficult aspects of developing an effective automatic categorization system is the absence of huge datasets. Using image processing and deep learning, this article presented an artificial endometrium cancer diagnosis system. The processes in this study include gathering a dermoscopy images from the database, preprocessing, segmentation using hybrid Fuzzy C-Means (FCM) and optimizing the weights using the Whale Optimization Algorithm (WOA). The characteristics of the damaged endometrium cells are retrieved using the feature extraction approach after the Magnetic Resonance pictures have been segmented. The collected characteristics are classified using a deep learning-based methodology called Long Short-Term Memory (LSTM) and Bi-directional LSTM classifiers. After using the publicly accessible data set, suggested classifiers obtain an accuracy of 97% and segmentation accuracy of 93%.

Brain Tumor Detection Based on Amended Convolution Neural Network Using MRI Images

  • Mohanasundari M;Chandrasekaran V;Anitha S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2788-2808
    • /
    • 2023
  • Brain tumors are one of the most threatening malignancies for humans. Misdiagnosis of brain tumors can result in false medical intervention, which ultimately reduces a patient's chance of survival. Manual identification and segmentation of brain tumors from Magnetic Resonance Imaging (MRI) scans can be difficult and error-prone because of the great range of tumor tissues that exist in various individuals and the similarity of normal tissues. To overcome this limitation, the Amended Convolutional Neural Network (ACNN) model has been introduced, a unique combination of three techniques that have not been previously explored for brain tumor detection. The three techniques integrated into the ACNN model are image tissue preprocessing using the Kalman Bucy Smoothing Filter to remove noisy pixels from the input, image tissue segmentation using the Isotonic Regressive Image Tissue Segmentation Process, and feature extraction using the Marr Wavelet Transformation. The extracted features are compared with the testing features using a sigmoid activation function in the output layer. The experimental findings show that the suggested model outperforms existing techniques concerning accuracy, precision, sensitivity, dice score, Jaccard index, specificity, Positive Predictive Value, Hausdorff distance, recall, and F1 score. The proposed ACNN model achieved a maximum accuracy of 98.8%, which is higher than other existing models, according to the experimental results.