• Title/Summary/Keyword: Medical Image Segmentation

Search Result 259, Processing Time 0.026 seconds

Intelligent Approach for Segmenting CT Lung Images Using Fuzzy Logic with Bitplane

  • Khan, Z. Faizal;Kannan, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1426-1436
    • /
    • 2014
  • In this article, we present a new grey scale image segmentation method based on Fuzzy logic and bitplane techniques which combines the bits of different bitplanes of a pixel inorder to increase the segmentation quality and to get a more reliable and accurate segmentation result. The proposed segmentation approach is conceptually different and explores a new strategy. Infact, our technique consists in combining many realizations of the image together inorder to increase the information quality and to get an optimal segmented image. For segmentation, we proceed in two steps. In the first step, we begin by identifying the bitplanes that represent the lungs clearly. For this purpose, the intensity value of a pixel is separated into bitplanes. In the second step, segmentation values are assigned for each bitplane based on membership table. The segmented values of foreground are combined and the segmentation values of background are combined. The algorithm is demonstrated through the medical computed tomography (CT) images. The segmentation accuracy of the proposed method is compared with two existing techniques. Satisfactory segmentation results have been obtained showing the effectiveness and superiority of the proposed method.

An Automatic Breast Mass Segmentation based on Deep Learning on Mammogram (유방 영상에서 딥러닝 기반의 유방 종괴 자동 분할 연구)

  • Kwon, So Yoon;Kim, Young Jae;Kim, Gwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1363-1369
    • /
    • 2018
  • Breast cancer is one of the most common cancers in women worldwide. In Korea, breast cancer is most common cancer in women followed by thyroid cancer. The purpose of this study is to evaluate the possibility of using deep - run model for segmentation of breast masses and to identify the best deep-run model for breast mass segmentation. In this study, data of patients with breast masses were collected at Asan Medical Center. We used 596 images of mammography and 596 images of gold standard. In the area of interest of the medical image, it was cut into a rectangular shape with a margin of about 10% up and down, and then converted into an 8-bit image by adjusting the window width and level. Also, the size of the image was resampled to $150{\times}150$. In Deconvolution net, the average accuracy is 91.78%. In U-net, the average accuracy is 90.09%. Deconvolution net showed slightly better performance than U-net in this study, so it is expected that deconvolution net will be better for breast mass segmentation. However, because of few cases, there are a few images that are not accurately segmented. Therefore, more research is needed with various training data.

Multi-scale Image Segmentation Using MSER and its Application (MSER을 이용한 다중 스케일 영상 분할과 응용)

  • Lee, Jin-Seon;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.11-21
    • /
    • 2014
  • Multi-scale image segmentation is important in many applications such as image stylization and medical diagnosis. This paper proposes a novel segmentation algorithm based on MSER(maximally stable extremal region) which captures multi-scale structure and is stable and efficient. The algorithm collects MSERs and then partitions the image plane by redrawing MSERs in specific order. To denoise and smooth the region boundaries, hierarchical morphological operations are developed. To illustrate effectiveness of the algorithm's multi-scale structure, effects of various types of LOD control are shown for image stylization. The proposed technique achieves this without time-consuming multi-level Gaussian smoothing. The comparisons of segmentation quality and timing efficiency with mean shift-based Edison system are presented.

An Efficient Segmentation-based Wavelet Compression Method for MR Image (MR 영상을 위한 효율적인 영역분할기반 웨이블렛 압축기법)

  • 문남수;이승준;송준석;김종효;이충웅
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.339-348
    • /
    • 1997
  • In this paper, we propose a coding method to improve compression efficiency for MR image. This can be achieved by combining coding scheme and segmentation scheme which removes noisy background region, which is meaningless for diagnosis in the MR image. In segmentation algoritm, we use full-resolution wavelet transform to extract features of regions in image and Kohonen self-organizing map to classify the features. The subsequent wavelet coder encodes only diagnostically significant foreground regions refering to segmentation map. Our proposed algorithm provides about 15% of bit rate reduction when compared with the same coder which is not combined with segmentation scheme. And the proposed scheme shows better reconstructed image quality than JPEG at the same compression ratio.

  • PDF

Medical Image Segmentation: A Comparison Between Unsupervised Clustering and Region Growing Technique for TRUS and MR Prostate Images

  • Ingale, Kiran;Shingare, Pratibha;Mahajan, Mangal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Prostate cancer is one of the most diagnosed malignancies found across the world today. American cancer society in recent research predicted that over 174,600 new prostate cancer cases found and nearly 31,620 death cases recorded. Researchers are developing modest and accurate methodologies to detect and diagnose prostate cancer. Recent work has been done in radiology to detect prostate tumors using ultrasound imaging and resonance imaging techniques. Transrectal ultrasound and Magnetic resonance images of the prostate gland help in the detection of cancer in the prostate gland. The proposed paper is based on comparison and analysis between two novel image segmentation approaches. Seed region growing and cluster based image segmentation is used to extract the region from trans-rectal ultrasound prostate and MR prostate images. The region of extraction represents the abnormality area that presents in men's prostate gland. Detection of such abnormalities in the prostate gland helps in the identification and treatment of prostate cancer

Automatic Bone Segmentation from CT Images Using Chan-Vese Multiphase Active Contour

  • Truc, P.T.H.;Kim, T.S.;Kim, Y.H.;Ahn, Y.B.;Lee, Y.K.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.713-720
    • /
    • 2007
  • In image-guided surgery, automatic bone segmentation of Computed Tomography (CT) images is an important but challenging step. Previous attempts include intensity-, edge-, region-, and deformable curve-based approaches [1], but none claims fully satisfactory performance. Although active contour (AC) techniques possess many excellent characteristics, their applications in CT image segmentation have not worthily exploited yet. In this study, we have evaluated the automaticity and performance of the model of Chan-Vese Multiphase AC Without Edges towards knee bone segmentation from CT images. This model is suitable because it is initialization-insensitive and topology-adaptive. Its segmentation results have been qualitatively compared with those from four other widely used AC models: namely Gradient Vector Flow (GVF) AC, Geometric AC, Geodesic AC, and GVF Fast Geometric AC. To quantitatively evaluate its performance, the results from a commercial software and a medical expert have been used. The evaluation results show that the Chan-Vese model provides superior performance with least user interaction, proving its suitability for automatic bone segmentation from CT images.

Automatic segmentation of 3-D brain MR images (3차원 두뇌 자기공명영상의 자동 Segmentation 기법)

  • Huh, S.;Lee, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.60-61
    • /
    • 1998
  • In this paper, we propose an algorithm for automatic segmentation of 3-dimesional brain MR images. In order to segment 3-dimensional brain MR images, we start segmentation from a mid-sagittal brain MR image. Then the segmented mid-sagittal brain MR image is used as a mask that is applied to the remaining lateral slices. Then we apply preprocessing, which includes thresholding and region-labeling, to the lateral slices, resulting in simplified 3-D brain MR images. Finally, we remove remaining problematic regions in the 3-dimensional brain MR image using the connectivity-based thresholding segmentation algorithm. Experiments show satisfactory results.

  • PDF

Multi-cell Segmentation of Glioblastoma Combining Marker-based Watershed and Elliptic Fitting Method in Fluorescence Microscope Image (마커 제어 워터셰드와 타원 적합기법을 결합한 다중 교모세포종 분할)

  • Lee, Jiyoung;Jeong, Daeun;Lee, Hyunwoo;Yang, Sejung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.159-166
    • /
    • 2021
  • In order to analyze cell images, accurate segmentation of each cell is indispensable. However, the reality is that accurate cell image segmentation is not easy due to various noises, dense cells, and inconsistent shape of cells. Therefore, in this paper, we propose an algorithm that combines marker-based watershed segmentation and ellipse fitting method for glioblastoma cell segmentation. In the proposed algorithm, in order to solve the over-segmentation problem of the existing watershed method, the marker-based watershed technique is primarily performed through "seeding using local minima". In addition, as a second process, the concave point search using ellipse fitting for final segmentation based on the connection line between the concave points has been performed. To evaluate the performance of the proposed algorithm, we compared three algorithms with other algorithms along with the calculation of segmentation accuracy, and we applied the algorithm to other cell image data to check the generalization and propose a solution.

Segmentation-based Wavelet Coding Method for MR Image (MR 영상의 영역분할기반 웨이블렛 부호화방법)

  • Moon, N.S.;Lee, S.J.;Song, J.S.;Kim, J.H.;Lee, C.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.95-100
    • /
    • 1997
  • In this paper, we propose a coding method to improve compression efficiency for MR image. This can be achieved by combining coding and segmentation scheme which removes noisy background region, which is meaningless for diagnosis, in MR image. The wavelet coder encodes only diagnostically significant foreground regions refering to segmentation map. Our proposed algorithm provides about 15% of bitrate reduction when compared with the same coder which is not combined with segmentation scheme. And the proposed scheme shows better reconstructed image Qualify than JPEG at the same compression ratio.

  • PDF

Boundary and Reverse Attention Module for Lung Nodule Segmentation in CT Images (CT 영상에서 폐 결절 분할을 위한 경계 및 역 어텐션 기법)

  • Hwang, Gyeongyeon;Ji, Yewon;Yoon, Hakyoung;Lee, Sang Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.265-272
    • /
    • 2022
  • As the risk of lung cancer has increased, early-stage detection and treatment of cancers have received a lot of attention. Among various medical imaging approaches, computer tomography (CT) has been widely utilized to examine the size and growth rate of lung nodules. However, the process of manual examination is a time-consuming task, and it causes physical and mental fatigue for medical professionals. Recently, many computer-aided diagnostic methods have been proposed to reduce the workload of medical professionals. In recent studies, encoder-decoder architectures have shown reliable performances in medical image segmentation, and it is adopted to predict lesion candidates. However, localizing nodules in lung CT images is a challenging problem due to the extremely small sizes and unstructured shapes of nodules. To solve these problems, we utilize atrous spatial pyramid pooling (ASPP) to minimize the loss of information for a general U-Net baseline model to extract rich representations from various receptive fields. Moreover, we propose mixed-up attention mechanism of reverse, boundary and convolutional block attention module (CBAM) to improve the accuracy of segmentation small scale of various shapes. The performance of the proposed model is compared with several previous attention mechanisms on the LIDC-IDRI dataset, and experimental results demonstrate that reverse, boundary, and CBAM (RB-CBAM) are effective in the segmentation of small nodules.