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Abstract

In image-guided surgery, automatic bone segmentation of Computed Tomography (CT) images is an important but challenging step.
Previous attempts include intensity-, edge-, region-, and deformable curve-based approaches [1], but none claims fully satisfactory
performance. Although active contour (AC) techniques possess many excellent characteristics, their applications in CT image segmentation
have not worthily exploited yet. In this study, we have evaluated the automaticity and performance of the model of Chan-Vese Multiphase
AC Without Edges towards knee bone segmentation from CT images. This model is suitable because it is initialization-insensitive and
topology-adaptive. Its segmentation results have been qualitatively compared with those from four other widely used AC models: namely
Gradient Vector Flow (GVF) AC, Geometric AC, Geodesic AC, and GVF Fast Geometric AC. To quantitatively evaluate its performance,
the results from a commercial software and a medical expert have been used. The evaluation results show that the Chan-Vese model
provides superior performance with least user interaction, proving its suitability for automatic bone segmentation from CT images.
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| . INTRODUCTION

R ecently, due to increasing computing power, computer-
aided surgery planning or image-guided surgery
systems become popular in clinical procedures. In computer-
assisted orthopedic surgery, image segmentation, especially
bone segmentation from CT imagery, is a critical component
but a challenging task due to i) inhomogeneous bone struc-
tures and ii) low contrast edges. Inhomogeneous regions are
due to the nature of bone structure in which the outer layer
(i.e., cortical bone) is denser than the inner one (i.e., spongy
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bone). As a result, the cortical bone appears brighter in CT
images while the spongy bone is darker and sometimes
textured. Moreover, during image acquisition process, small
gaps can exist in the bone surfaces where blood vessels
gothrough. Also, when the boundaries of two bone regions are
close to each other, they tend to be diffused making the
background pixels between them brighter and thus contrast
lower. The boxes in Fig. 1 indicate these challenging charac-
teristics.

Some research packages including ANALYZE [2], VTK
[3], and Insight Toolkit ITK [4] are available for medical
image processing in general and segmentation in particular.
Most segmentation processes, which utilize these packages,
use a simple threshold and initial boundaries, get the resulting
contours, and connect the discontinued segments with linear
lines. These approaches have two major disadvantages. One is
that visual inspection of every single image is needed for
proper settings of the threshold value. The other is that some
regions of image noise having high intensity are misclassified
as bone and some bone regions which are biurred and
resemble background will usually be omitted. Therefore, it is
desirable to develop automatic segmentation techniques that
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both improve segmentation performance and reduce user
interactions. There have been a few attempts including global
thresholding, region growing, region competition, watershed
segmentation, etc. as surveyed in [1] and [5]. Unfortunately,
none of them claims full automaticity and less user
interactivity for bone segmentation according to the criteria
mentioned above.

Recently, active contour (AC)-based segmentation techniques
are being actively researched and developed. Since it was first
introduced by Kass [6] in 1988, AC model (a.k.a. snakes) has
attracted much attention in the image segmentation research
community. To date, there are two types of AC models in
literature: parametric AC’s (e.g. [6-8]) and geometric AC’s
(e.g. [9-12]). In general, AC models are the descriptions of
contours in 2D or surfaces in 3D which evolve under an
appropriate energy to move toward desired features, such as
object boundaries. The parametric AC’s, which depend on the
parameterizations of the contours, are driven to seek the
minimal energy state while the geometric ones are evolved by
the level-set framework [13-14] in which they are implicitly
represented by the zero level-set of a function.

In applications of AC models on CT bone segmentation,
some research work have been done. They tried to modify the
parametric AC’s, which are edge-based, by incorporating
region-based information as in [15-16], [5] or optimizing the
flow using the genetic algorithm as in [17]. Although those
modified active contour models can be less sensitive to noise
or can overcome the local minima problem, they are still far
from automatic bone segmentation. By an automatic bone
scgmentation algorithm, we mean the algorithm that can
correctly segment bone regions with minimal user interactions
such as image-dependent initialization or prior information
about bone shapes. To test the techniques, in this study, we
have implemented five latest AC approaches: namely GVF
AC [8], Geometric AC [9], Geodesic AC [10], GVF Fast
Geometric AC [11], and Chan-Vese (CV) Multiphase AC

(@) (b)

Fig. 1. Typical CT images showing bones with challenging characteristics in
segmentation such as (a) gaps and texture areas and (b) weak edges.

Without Edges [12] and then built up a segmentation system
utilizing each of these AC models to extract knee bones from
CT data. According to the above categorization, the GVF AC
model belongs to the parametric AC’s whilst the other four are
of the geometric ones. Our motivation here is to find the most
appropriate technique for automatic bone extraction. These
models are good candidates because of their salient
characteristics such as initialization insensitiveness and
automatic splitting and mergingability to capture multiple
objects. Together with qualitative evaluations of these
models’ performances, suitable measures are used to compare
their performances against the performance of a commercial
software and a medical expert. Both qualitative and quan-
titative evaluations indicate that the CV Multiphase AC
Without Edges model produces excellent segmentation
results, proving that fully automatic bone segmentation could
be possible.

Il. MATERIALS AND METHODS

In this section, we first introduce the 3D-DOCTOR
software: the commercial software for segmentation commonly
used in the clinic. Then, we briefly describe the five AC
models evaluated in this study. These models possess the
following suitable features that make themselves good
candidates for the automatic bone segmentation. The GVF AC
is initialization insensitive and the geometric, geodesic, and
GVF fast geometric AC models are adaptive to topology
changes. The CV multiphase AC model has both of these
advantages.

A. 3D-DOCTOR Software

3D-DOCTOR! (available from Able software Corp.) is a
commercial software that is approved by FDA (US Food and
Drug Administration with 510K clearance) for medical
imaging and 3D visual- ization applications. It is currently
being used by leading hospitals, medical schools, and research
organizations around the world. For image segmentation,
depending on the quality of images, 3D-DOCTOR provides
different methods such as Fully Automatic Texture-based
Segmentation, Thresholding-based Interactive Segmentation,
Region-based Object Segm-entation, and Easy-to-use Polygon-
based Manual Tracing.

Fully Automatic Texture-based Segmentation works well
only for images with distinguishable texture, color, and
contrast between objects. However, since CT images do not
have such a good quality, we use Thresholding-based

1. website: http://www_ablesw com/3d—doctor/
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Interactive Segmentation to extract bone structures from CT
images as follows. For every CT image, a trained expert
interactively chooses a minimum and maximum threshold to
demarcate the bone regions. All pixels within the minimum
and maximum threshold range are labeled as bone while all
others are regarded as background. Then, the boundaries of
bone regions in the current image are extracted. The threshold
values can be adjusted to obtain better results. The resultant
boundary lines can be edited by the available “Edit” tools.
Finally, the boundary data are saved. All these steps are
repeated for other images.

B. Gradient Vector Flow Active Contour

The GVF [8] refers to the definition of slowly-varying and
bidirectional external force that helps an active contour reach
the object boundaries with a large capture range. One of its
distinguished points is the ability to move into the boundary
concavities. One can think of this flow field as optimal
direction to be followed to locate the object boundaries.

In order to build up this field, an appropriate edge map
function g (z,y) having larger values near the image edges is
first chosen. To this end, a Gaussian-derived function on the
image gradient is usually considered for its smooth chara-
cteristic:

v Dz, y)f
1 202E

g(z,y) = 1—m6 1)

where o is variance and [ G, * 1] is the convolution output of
the input image with a Gaussian kernel.
The GVF is defined as a two-dimensional vector field

[u(z, y), v(z, y)], that minimizes the following energy
functional

E(u,v)= // plud+ul+ vl + o))
Q
+v gl (u,v)— Vgl dzdy

where u,, u, v,, and v, are the spatial derivatives of the
field and p a noise-control parameter.

This functional keeps the GVF field nearly same as the
gradient of the edge map, Vg, in the neighborhood of the
boundaries where |V gl is large. At the same time, the field
still has significant values in the homogeneous regions, where
|V gl gets close to 0, via a diffusion process. One can optimize
[u(z, y), v(z, y)] using the gradient descent method and the
calculus of variations
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where g, and g, are the spatial derivatives of g.
In [8], a parametric AC using the normalized GVF (NGVF)

[122 u/ Vur+0?, v=v/vu*+ v*] was proposed for

boundary extraction in the following way:

2y i) i) @)
op

where Clp)=[z(p),y(p)]: [0, 1] > R? is the paramet-
erized curve, and o and (3 the adjustment constants. The first
two terms of this flow are for regularization and the last one,
the NGVF, is served as an external force pulling the curve
toward the object’s boundaries.

Such a flow depends on the parameterizations of the curve
and cannot topologically change to track multiple objects.
Also it involves the second and fourth order derivatives that
are difficult to estimate. It is, however, relatively free of the
initial conditions due to the GVF’s characteristics mentioned
above.

C. Geometric AC and Geodesic AC

Geometric active contours [9], {18] are based on the theory
of curve evolution [19] and the level set method [14]. In this
framework, curves C are represented by the zero level set of a
Lipschitz function @ (z, y;t) and their evolutions are
performed using only geometric measures, making themselves
independent of the curves’ parameterizations.

Toward the construction of the flow, a signed distance
function is used:

C= {(:&y) 8% (xay) :0}7
inside (C) ={(z,y) : @ (z,y) >0}, 4
outside (C) = {(z,y) : @ (z,y) <0}.
The Geometric AC flow evolves & according to

z,=glk+ V,)Iv o] (5)

where « is the Euclidean curvature, V;, a constant, and

. —veE@r P .
g=glz)=e an edge-based function.

In (5), the curvature x-based flow has the properties of
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smoothing the curve, while 1/, shrinks or expands the contour
along its normal direction at a constant velocity. The product
g * (k+ V) determines the overall evolution speed of level
sets of @ (z, y; t). At the same time, the main use of g has the
effect of stopping the curve when it reaches to the object
boundaries.

In contrast to the parametric AC’s, the geometric flow is
topology independent and thus allows the AC to detect
multiple objects. This scheme works well in general for
objects that have good contrast. In cases where there are high
variations of gradient as well as gaps along the edge, this
contour, however, tends to pass through the object boundaries.
To overcome this limitation, the following evolution flow,
called the geodesic AC flow, was introducedin [10], [20] and
can be expressed as

B,=gk+ V)IVol+ Vg vVa. (6)

Comparing against the old model given in (5), we see that
the extra stopping term (Vg » V @ ) is used to increase the
attraction of the evolving contour toward the boundaries.

D. GVF Fast Geometric AC

Inspired from the observations that the NGVF consists of
the optimal direction to be followed to reach the object
boundaries and that evolving the contour in the direction of its
normal is a main characteristic of the geometric active contour
flow, Paragios et al. [11] proposed an integration of NGVF
into the geometric AC:

@, (p)=g « {{Hp)+ BllvV 2 (p)l—

. @)
1—|a@)] 0, 0] « valp)

where H(p) = sign{[u, v] » N(p))eiém’”i] s NI with 6
a scale factor has significant values when the normal and the
NGVF are close to orthogonal.

In the above flow, the use of has the effect of regularizing
the propagation, and the use of [1— |H(p)|[u, 0] « v @ (p)
has the effect of a bidirectional flow that moves the curve
toward object boundaries from either sides, while the
remaining term H(p)|V @ | has the effect of an adaptive
balloon force used to determine the evolution when the
bidirectional flow term becomes inactive. Similar to that of the
geometric AC, the overall speed of this curve evolution is
coupled with the edge-driven information via a stopping
term g
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Fig, 2. All possible positions of the curve. When it is on the boundary of the
object, the “fitting” term is minimized.

E. Chan-Vese Multiphase AC Without Edges

Chan and Vese proposed in [21] an alternative form of AC,
called the AC without edges (shortly, the CV AC model),
based on the Mumford and Shah functional for segmentation
[22] and the level set framework [14]. Unlike other level
set-based AC’s which rely on the gradient of the image as the
stopping term and thus have unsatisfactory performance in
noisy images, the CV model does not use the edge information
(so named “without edges”) but utilizes the difference
between the regions inside and outside of the curve.

In this case, the image u,, is assumed to be consisted of two

areas with approximately piecewise- constant intensities, of
different value c,, and c,,,,. The “fitting” term is defined as:

out*

RO+ FRo= [

inside (C)

|uo (z, 1) — ¢, * dudy

®)
+/ ’uo (z,y)— c, I dady
outside ()

where ¢, and ¢, are respectively the average intensities inside
and outside the variable curve C.
As can be seen in Fig. 2, the “fitting” term is minimized if
the curve C'is placed exactly on the boundary of the two areas.
The level set formulation of this model is expressed as:

®t=|V®|[Vﬁ—(uo—cl)2+ (U0_02)2] C)]
where v is a smoothing constant.

This flow evolves the AC, looking for a two-phase
segmentation of the image, given by u(z,y) = ¢;, H|(z,y)]



+ Cout (1 — H[@ (z,)]), where H is the Heaviside function:

ifz=>=0,
otherwise.

H(z) = {1’ (10)

0,

The main advantages of the CV snake over other active
contour models are i) it automatically detects interior contours
and i) the initial curve can be placed anywhere in the image.

For multiphase cases, we can write illustratively the
formulations for four phases or classes (and therefore using
the two level sets functions &, and @ ,) as

1%} . V@l 9 2
88_t:|v@1¥{y.d“/( |VQ1|)_ [(Uo_cu) ‘(UO—Col) ]H(QQ)

—[(Uo_ 010)2— (Uo_COO)Z](l_H(QZ))

8 . VQQ P 2
—5t—:|vg21{u.dw( |V®2\)_[(UO_CH) _(Uo*Cm) ]H(@1)

- [(uo_ 010)2_ (UO_CQQ)Z](I_H(®1))

(a)

2)

(d)

3)

(9)

4)

(m)

(o)
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where
en (@) = average (uy) in{(z, y): @,(z,y)>0, @,(z,y) >0},
ey (B) = average (ug) in{(z, y): @,(z,y) >0, @,(z,y) <0},
cu{@) :avemge(uo)in{(x, ) @ (zy) <0, @,(z,y)> 0},
coo (@) = average (uy) in{(z, y): @,(z,y) <0, F,(2,y) < 0}-

IIl. RESULTS AND DISCUSSIONS

In this section, the performance of the CV multiphase AC
without edges model is compared against those of other four
approaches and the commercial 3D-DOCTOR software. To do
so, we apply all five techniques and the 3D-DOCTOR
software on a set of fifteen CT images covering the knee
regions of one person. The evaluation includes both
qualitative and quantitative comparisons of the obtained
results.

{c)

(0)

Fig. 3, CT bone segmentation results using GVF AC (row 1), GVF Fast Geometric AC (row 2), Geometric AC (row 3), Geodesic AC (row 4), and CV AC (row 5).
From left to right: the initial contour, the intermediate evolving contour, and the final contour. The CV AC model generates the best segmentation results

among the five methods considered.

vol 28 | December, 2007 717



Automatic Bone Segmentation from CT Images Using Chan—Vese Multiphase Active Contour

{a)

(c)

Fig. 4. Qualitative comparison. (a) Segmentation resuft from the CV multi-phase AC without edges model, (b) the 3D- DOCTOR software, and (c) the expert manual
delineation. The CV AC does not contain impractically cross-over parts while the contour from the 3D-DOCTOR software does (indicated by the white

ellipse).

A. Qualitative Evaluation

For qualitative evaluation, we considered the segmentation
to be satisfactory if the AC correctly finds the bone boundaries
as determined visually. However, unsatisfactory if the AC
does not converge to correct boundaries.

The evolving AC will stop when the relative difference in
areas of segmented regions between two consecutive
iterations is less than 0.1 percent, i.e.,

A~ A,
%*’“'du% (11
k

where A, and A, are respectively the areas of segmented
regions in iteration k" and (k— 1)"".

Fig. 3 shows segmentation results obtained using the five
mentioned AC models. For the first four models: GVF, GVF
Fast Geometric, Geometric, and Geodesic AC’s, we initialize
the contours inside the bone regions because the
outside-initialized contours tend to stop at the outer boundary
and can never evolve toward the inner one as expected. One
may think of using a threshold to set the initial contours.
However, for the level set-based AC’s, it is easier to set the
contours geometrically due to the signed distance function (4)
although arbitrary initial boundaries by a threshold will work
as well. Moreover, to select a threshold suitable for a set of
images 1s not an easy problem.

These four models cannot correctly extract bone structures
because of their limitations in noisy environment. As shown in
Fig. 3 - row 1, the lower left part of the GVF snake after a
certain number of iterations could not propagate anymore
because the NGVF in that area is close to orthogonal to the
inward normal of the curve. This is plausible when dealing
with noisy images where some noise can be accidentally
considered as linesegments. To remove such noise, the
Gaussian-derived edge map function (1) should be more
desirable, but it in turn can smooth the edges as well. In this
situation, the balloon force in the GVF fast geometric AC
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model (7) can help to overcome this limitation (Fig. 3(e)).
However, as shown in Fig. 3(f) it tends to pass through and
thus cannot stop at the desired but weak edges. The geometric
AC model (Fig. 3 - row 3) also suffers from the same problem
of the GVF fast geometric AC. On the other hand, comparing
Fig. 3(1) with (i), we can see that the geodesic AC (row 4) with
the extra stopping term (6) can pull back the boundary-
passing-through contour. Nevertheless, this term is still not
strong enough at some blurred parts of the boundary.

Differently, the CV AC model can successfully find the
bone boundaries as shown in Fig. 3 - row 5. In this experiment,
two level set functions (i.e., four phases) is enough to catch all
objects because the maximum number of bone regions in the
dataset is three. This model works well in this case because it
is not based on the edge function to stop the evolving contour
on the desired boundary which is really blurred. Carefully
observing Fig. 3(0), we can see that the small bone region (the
small contour under the bigger one) is also detected without
any prior information. In order to detect this region in case of
using the other four models, we need to create an initial
contour in its neighborhood, which obviously requires much
user interaction. One other interesting thing is that it has a
robust initialization scheme in which many small contours are
initially placed such that they cover the whole image (Fig.
3(m)). With this scheme, the contours can converge to desired
object boundaries no matter where they are.

The qualitative comparisons between the results from the
CV AC model and those from the 3D- DOCTOR software are
presented in Fig. 4. The CV AC model yields better results in
the sense that it is smoother and does not contain impractically
sophisticated parts as the commercial software does. We can
see clearly from Fig. 4(b) that the commercial software
sometimes generates cross-over contours which of course
cannot truthfully represent any real bone structure.

B. Quantitative Evaluation

Qualitative evaluation in the previous section shows that the
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Fig. 5. Performance plots vs. sample number: (a) accuracy, (b) sensitivity, (c) specificity, and (d) overlap. Left dark bars: the CV AC model; right bright bars: the
commercial software. The mean and SD of these measurements are given in Table I.

first four models fail to converge. Obviously their perfor-
mances are worse than that of the CV AC model. Therefore, in
this section, we validate the performance of this model in
comparison with the commercial software only. To this end,
the expert manual delineations are used as the “ground truth”
and the “goodness” measures such as accuracy, sensitivity,
specificity, and overlap introduced in [23] are adopted. These
measures are computed on a pixel-wise manner, in which
bone-labeled pixels are considered positive and background
pixels negative. Compared with the “ground truth”, let TP be
the number of pixels true positive (correctly classified as
objects), TN true negative (correctly classified as background),
FP false positive (background misclassified as objects), and
FN false negative (objects misclassified as background).
Then, we have:

accuracy = TP+ IN ; it —L'
Y= TPy P+ TN+ FN ST e TN

TP

Ve = TP EN

e . TN
specifictity= TNt FP
For every sample slice in the dataset, the accuracy,
sensitivity, specificity, and overlap measures are calculated
from the segmentation results of the CV AC model and of the
3D-DOCTOR: software, both compared against the “ground
truth”. These performance measures for the whole dataset are
presented in Fig. 5 and their mean and standard deviation (SD)
are given in Table L. It can be seen that the CV AC model
yields superior performance than the commercial software
does. This is due to the fact that this model does not requires
smoothing the initial image even if it is noisy and thus the
objects’ boundaries are accurately detected and preserved.

IV. CONCLUSION

We have examined the five different active contour-based

Table 1, The mean and standard deviation of the accuracy, sensitivity, specificity, and overlap measurements of the CA AC model and the commercial software.

Approach _ accuracy  sensitivity specificity overlap
CV AC Mean 0.9975 0.9957 0.9978 0.9822
SD 8.E-4 25.E-4 9.E-4 76.E-4

Commercial Mean 0.9475 0.9178 0.9521 0.8744
SD 16.E-4 143.E-4 27.E-4 169.E-4
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segmentation techniques, which can be categorized as the
without-edge type (the CV AC model) and the edge-based
type (the four other AC models). Both qualitative and
quantitative evaluations have been performed by applying
these techniques toward knee bone segmentation from a set of
CT images. Qualitatively, the results showed that the
edge-based AC’s failed to detect correct boundaries of bone
regions because they were highly sensitive to noise and
low-contrast boundaries which are the characteristics of CT
images. On the other hand, the CV AC model showed
excellent potential in segmenting bone regions correctly and
automatically with some advantages such as robustness in
curve initialization and automatic detection of multiple
objects. This model also generated visually better results than
the commercial 3D-DOCTOR software did in the sense that its
contours were smoother and did not contain cross-over parts
which could not truthfully represent real bone structures.

For quantitative evaluation, performance measures such as
accuracy, sensitivity, specificity, and overlap were calculated
over the whole dataset, basing to the medical expert manual
delineations as the “ground truth”. The performance of the CV
AC model was superior to that of the commercial software.
Consequently, we consider that the CV Multiphase AC
Without Edges model should be a preferred choice for the
automatic bone segmentation work.
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