• Title/Summary/Keyword: Medical Image Fusion

Search Result 79, Processing Time 0.023 seconds

Multimodal Medical Image Fusion Based on Sugeno's Intuitionistic Fuzzy Sets

  • Tirupal, Talari;Mohan, Bhuma Chandra;Kumar, Samayamantula Srinivas
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.173-180
    • /
    • 2017
  • Multimodal medical image fusion is the process of retrieving valuable information from medical images. The primary goal of medical image fusion is to combine several images obtained from various sources into a distinct image suitable for improved diagnosis. Complexity in medical images is higher, and many soft computing methods are applied by researchers to process them. Intuitionistic fuzzy sets are more appropriate for medical images because the images have many uncertainties. In this paper, a new method, based on Sugeno's intuitionistic fuzzy set (SIFS), is proposed. First, medical images are converted into Sugeno's intuitionistic fuzzy image (SIFI). An exponential intuitionistic fuzzy entropy calculates the optimum values of membership, non-membership, and hesitation degree functions. Then, the two SIFIs are disintegrated into image blocks for calculating the count of blackness and whiteness of the blocks. Finally, the fused image is rebuilt from the recombination of SIFI image blocks. The efficiency of the use of SIFS in multimodal medical image fusion is demonstrated on several pairs of images and the results are compared with existing studies in recent literature.

New Medical Image Fusion Approach with Coding Based on SCD in Wireless Sensor Network

  • Zhang, De-gan;Wang, Xiang;Song, Xiao-dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2384-2392
    • /
    • 2015
  • The technical development and practical applications of big-data for health is one hot topic under the banner of big-data. Big-data medical image fusion is one of key problems. A new fusion approach with coding based on Spherical Coordinate Domain (SCD) in Wireless Sensor Network (WSN) for big-data medical image is proposed in this paper. In this approach, the three high-frequency coefficients in wavelet domain of medical image are pre-processed. This pre-processing strategy can reduce the redundant ratio of big-data medical image. Firstly, the high-frequency coefficients are transformed to the spherical coordinate domain to reduce the correlation in the same scale. Then, a multi-scale model product (MSMP) is used to control the shrinkage function so as to make the small wavelet coefficients and some noise removed. The high-frequency parts in spherical coordinate domain are coded by improved SPIHT algorithm. Finally, based on the multi-scale edge of medical image, it can be fused and reconstructed. Experimental results indicate the novel approach is effective and very useful for transmission of big-data medical image(especially, in the wireless environment).

Multimodal Medical Image Fusion Based on Two-Scale Decomposer and Detail Preservation Model (이중스케일분해기와 미세정보 보존모델에 기반한 다중 모드 의료영상 융합연구)

  • Zhang, Yingmei;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.655-658
    • /
    • 2021
  • The purpose of multimodal medical image fusion (MMIF) is to integrate images of different modes with different details into a result image with rich information, which is convenient for doctors to accurately diagnose and treat the diseased tissues of patients. Encouraged by this purpose, this paper proposes a novel method based on a two-scale decomposer and detail preservation model. The first step is to use the two-scale decomposer to decompose the source image into the energy layers and structure layers, which have the characteristic of detail preservation. And then, structure tensor operator and max-abs are combined to fuse the structure layers. The detail preservation model is proposed for the fusion of the energy layers, which greatly improves the image performance. The fused image is achieved by summing up the two fused sub-images obtained by the above fusion rules. Experiments demonstrate that the proposed method has superior performance compared with the state-of-the-art fusion methods.

Multimodal Medical Image Fusion Based on Double-Layer Decomposer and Fine Structure Preservation Model (복층 분해기와 상세구조 보존모델에 기반한 다중모드 의료영상 융합)

  • Zhang, Yingmei;Lee, Hyo Jong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.6
    • /
    • pp.185-192
    • /
    • 2022
  • Multimodal medical image fusion (MMIF) fuses two images containing different structural details generated in two different modes into a comprehensive image with saturated information, which can help doctors improve the accuracy of observation and treatment of patients' diseases. Therefore, a method based on double-layer decomposer and fine structure preservation model is proposed. Firstly, a double-layer decomposer is applied to decompose the source images into the energy layers and structure layers, which can preserve details well. Secondly, The structure layer is processed by combining the structure tensor operator (STO) and max-abs. As for the energy layers, a fine structure preservation model is proposed to guide the fusion, further improving the image quality. Finally, the fused image can be achieved by performing an addition operation between the two sub-fused images formed through the fusion rules. Experiments manifest that our method has excellent performance compared with several typical fusion methods.

Performance Evaluation of the Developed Diagnostic Multi-Leaf Collimator and Implementation of Fusion Image of X-ray Image and Infrared Thermography Image (개발한 진단용 다엽조리개 성능평가 및 X선영상과 적외선체열영상의 융합영상 구현)

  • Kwon, Soon-Mu;Shim, Jae-Goo;Chon, Kwon-Su
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.365-371
    • /
    • 2019
  • We have developed and applied a diagnostic Multi-Leaf Collimator (MLC) to optimized the X-ray field in medical imaging and the usefulness evaluated through the fusion of infrared image and X-ray image acquired by infrared camera. The hand and skull radiography with multi-leaf collimator(MLC) showed significant area dose reductions of 22.9% and 31.3% compared to ARC and leakage dose was compliant with KS A 4732. Also scattering doses of 50 cm and 100 cm showed a significant decrease to confirm the usefulness of MLC. It was confirmed that the fusion of infrared images with an adjustable degree of transparency was possible in the X-ray images. Therefore, fusion of anatomical information with physiological convergence is expected to contribute and improvement of diagnostic ability. In addition, the feasibility of convergence X-ray imaging and DITI devices and the possibility of driving MLC with infrared images were confirmed.

Usefulness of Region Cut Subtraction in Fusion & MIP 3D Reconstruction Image (Fusion & Maximum Intensity Projection 3D 재구성 영상에서 Region Cut Subtraction의 유용성)

  • Moon, A-Reum;Chi, Yong-Gi;Choi, Sung-Wook;Lee, Hyuk;Lee, Kyoo-Bok;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • Purpose: PET/CT combines functional and morphologic data and increases diagnostic accuracy in a variety of malignancies. Especially reconstructed Fusion PET/CT images or MIP (Maximum Intensity Projection) images from a 2-dimensional image to a 3-dimensional one are useful in visualization of the lesion. But in Fusion & MIP 3D reconstruction image, due to hot uptake by urine or urostomy bag, lesion is overlapped so it is difficult that we can distinguish the lesion with the naked eye. This research tries to improve a distinction by removing parts of hot uptake. Materials and Methods: This research has been conducted the object of patients who have went to our hospital from September 2008 to March 2009 and have a lot of urine of remaining volume as disease of uterus, bladder, rectum in the result of PET/CT examination. We used GE Company's Advantage Workstation AW4.3 05 Version Volume Viewer program. As an analysis method, set up ROI in region of removal in axial volume image, select Cut Outside and apply same method in coronal volume image. Next, adjust minimum value in Threshold of 3D Tools, select subtraction in Advanced Processing. It makes Fusion & MIP images and compares them with the image no using Region Cut Definition. Results: In Fusion & MIP 3D reconstruction image, it makes Fusion & MIP images and compares them by using Advantage Workstation AW4.3 05's Region Cut Subtraction, parts of hot uptake according to patient's urine can be removed. Distinction of lesion was clearly reconstructed in image using Region Cut Definition. Conclusion: After examining the patients showing hot uptake on account of volume of urine intake in bladder, in process of reconstruction image, if parts of hot uptake would be removed, it could contribute to offering much better diagnostic information than image subtraction of conventional method. Especially in case of disease of uterus, bladder and rectum, it will be helpful for qualitative improvement of image.

  • PDF

A Study of Fusion Image System and Simulation based on Mutual Information (상호정보량에 의한 이미지 융합시스템 및 시뮬레이션에 관한 연구)

  • Kim, Yonggil;Kim, Chul;Moon, Kyungil
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.1
    • /
    • pp.139-148
    • /
    • 2015
  • The purpose of image fusion is to combine the relevant information from a set of images into a single image, where the resultant fused image will be more informative and complete than any of the input images. Image fusion techniques can improve the quality and increase the application of these data important applications of the fusion of images include medical imaging, remote sensing, and robotics. In this paper, we suggest a new method to generate a fusion image using the close relation of image features obtained through maximum entropy threshold and mutual information. This method represents a good image registration in case of using a blurring image than other image fusion methods.

Image Fusion Based on Statistical Hypothesis Test Using Wavelet Transform (웨이블렛 변환을 이용한 통계적 가설검정에 의한 영상융합)

  • Park, Min-Joon;Kwon, Min-Jun;Kim, Gi-Hun;Shim, Han-Seul;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.695-708
    • /
    • 2011
  • Image fusion is the process of combining multiple images of the same scene into a single fused image with application to many fields, such as remote sensing, computer vision, robotics, medical imaging and military affairs. The widely used image fusion rules that use wavelet transform have been based on a simple comparison with the activity measures of local windows such as mean and standard deviation. In this case, information features from the original images are excluded in the fusion image and distorted fusion images are obtained for noisy images. In this paper, we propose the use of a nonparametric squared ranks test on the quality of variance for two samples in order to overcome the influence of the noise and guarantee the homogeneity of the fused image. We evaluate the method both quantitatively and qualitatively for image fusion as well as compare it to some existing fusion methods. Experimental results indicate that the proposed method is effective and provides satisfactory fusion results.

MOSAICFUSION: MERGING MODALITIES WITH PARTIAL DIFFERENTIAL EQUATION AND DISCRETE COSINE TRANSFORMATION

  • GARGI TRIVEDI;RAJESH SANGHAVI
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.5_6
    • /
    • pp.389-406
    • /
    • 2023
  • In the pursuit of enhancing image fusion techniques, this research presents a novel approach for fusing multimodal images, specifically infrared (IR) and visible (VIS) images, utilizing a combination of partial differential equations (PDE) and discrete cosine transformation (DCT). The proposed method seeks to leverage the thermal and structural information provided by IR imaging and the fine-grained details offered by VIS imaging create composite images that are superior in quality and informativeness. Through a meticulous fusion process, which involves PDE-guided fusion, DCT component selection, and weighted combination, the methodology aims to strike a balance that optimally preserves essential features and minimizes artifacts. Rigorous evaluations, both objective and subjective, are conducted to validate the effectiveness of the approach. This research contributes to the ongoing advancement of multimodal image fusion, addressing applications in fields like medical imaging, surveillance, and remote sensing, where the marriage of IR and VIS data is of paramount importance.

Radiographic Analysis of Instrumented Posterolateral Fusion Mass Using Mixture of Local Autologous Bone and b-TCP (PolyBone$^{(R)}$) in a Lumbar Spinal Fusion Surgery

  • Park, Jin-Hoon;Choi, Chung-Gon;Jeon, Sang-Ryong;Rhim, Seung-Chul;Kim, Chang-Jin;Roh, Sung-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.5
    • /
    • pp.267-272
    • /
    • 2011
  • Objective : Although iliac crest autograft is the gold standard for lumbar fusion, the morbidity of donor site leads us to find an alternatives to replace autologous bone graft. Ceramic-based synthetic bone grafts such as hydroxyapatite (HA) and b-tricalcium phosphate (b-TCP) provide scaffolds similar to those of autologous bone, are plentiful and inexpensive, and are not associated with donor morbidity. The present report describes the use of Polybone$^{(R)}$ (Kyungwon Medical, Korea), a beta-tricalcium phosphate, for lumbar posterolateral fusion and assesses clinical and radiological efficacy as a graft material. Methods : This study retrospectively analyzed data from 32 patients (11 men, 21 women) who underwent posterolateral fusion (PLF) using PolyBone$^{(R)}$ from January to August, 2008. Back and leg pain were assessed using a Numeric Rating Scale (NRS), and clinical outcome was assessed using the Oswestry Disability Index (ODI). Serial radiological X-ray follow up were done at 1, 3, 6 12 month. A computed tomography (CT) scan was done in 12 month. Radiological fusion was assessed using simple anterior-posterior (AP) X-rays and computed tomography (CT). The changes of radiodensity of fusion mass showed on the X-ray image were analyzed into 4 stages to assess PLF status. Results : The mean NRS scores for leg pain and back pain decreased over 12 months postoperatively, from 8.0 to 1.0 and from 6.7 to 1.7, respectively. The mean ODI score also decreased from 60.5 to 17.7. X-rays and CT showed that 25 cases had stage IV fusion bridges at 12 months postoperatively (83.3% success). The radiodensity of fusion mass on X-ray AP image significantly changed at 1 and 6 months. Conclusion: The present results indicate that the use of a mixture of local autologous bone and PolyBone$^{(R)}$ results in fusion rates comparable to those using autologous bone and has the advantage of reduced morbidity. In addition, the graft radiodensity ratio significantly changed at postoperative 1 and 6 months, possibly reflecting the inflammatory response and stabilization.