A New Method of Estimating Coronary Artery Diameter Using Direction Codes (방향코드를 이용한 관상동맥의 직경 측정 방법)
-
- Journal of Biomedical Engineering Research
- /
- v.16 no.3
- /
- pp.289-300
- /
- 1995
The conventionally used method requires centerline of vessels to estimate the vessel diameter. Two methods of estimating the centerline of vessels are reported : One is manually observer-defined method. This potentially contributes to inter-and intra-observer variability. And the other is to auto- matically detect the centerline of vessels. But this is very complicated method. In this paper, we propose a new method of estimating vessel diameter using direction codes and position informs:ion without detecting centerline. Since this method detects the vessel boundary and direction code at d same time, it simplifies the procedure and reduces execution time in estimating the vessel diameter. Compared to a method that automatically estimates the vessel diAmeter uslng centerline, our method provides improved accuracy in image with poor contrast, branching or obstructed vessels. Also, this provides a good compression of boundary description, because each direction code element can be coded with 3 bits only, instead of the 4 bytes required for the storage of the coordinates of each border pixel. Our experiments demonstrate the usefulness of the technique using direction code for quantitative analysis of coronary angiography Experimental results Justify the validity of the proposed method.
In this study, regional variation in vertebral bone density due to osteoporosis were investigated using a method that employs images from QCT. QCT images(1mm thick slices) of the first lumbar vertebra from a normal person (23/M, BMD=139.8mg/ml) and from an osteoporotic patient (54/F, BMD=82.0mg/ml) were obtained. Uniform settings (140kVp, 204mA) were used and images of 300 Hounsfield Unit or greater were selectied to filler out soft tissue interference. To assess the regional variation of the area fraction the vertebral body was divided into 3 layers and each layer contained 9 regions. Area faction was calculated based on image analysis data. Our results showed that the area fraction at the middle of the vertebra was quite lower than the endplate and peripheral regions, but the area fraction values from the osteoporotic patient were uniform throughout the entire height of the vertebral body, which indicates the significant drop of BMD had occurred near both end-plates due to the osteoporosis, especially at the peripheral regions. Our results suggest the susceptability of the vertebrae to compression fracture types in osteoporotic spine.
Purpose : In radiotherapy for cervix cancer, both 3-dimensioal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) could reduce the dose to the small bowel (SB), while the small bowel displacement system (SBDS) could reduce the SB volume in the pelvic cavity. To evaluate the effect of the SBDS on the dose to the SB in 3D-CRT and IMRT plans, 3D-CRT and IMRT plans, with or without SBDS, were compared. Materials and Methods : Ten consecutive uterine cervix cancer patients, receiving curative radiotherapy, were accrued. Ten pairs of computerized tomography (CT) scans were obtained in the prone position, with or without SBDS, which consisted of a Styrofoam compression device and an individualized custom-made abdominal immobilization device. Both 3D-CRT, using the 4-field box technique, and IMRT plans, with 7 portals of 15 MV X-ray, were generated for each CT image, and proscribed 50 Gy (25 fractions) to the isocenter. For the SB, the volume change due to the SBDS and the DVHs of the four different plans were analyzed using palled t-tests. Results : The SBDS significantly reduced the mean SB volume from 522 to 262 cm
With the development of deep learning, semantic segmentation methods are being studied in various fields. There is a problem that segmenation accuracy drops in fields that require accuracy such as medical image analysis. In this paper, we improved PSPNet, which is a deep learning based segmentation method to minimized the loss of features during semantic segmentation. Conventional deep learning based segmentation methods result in lower resolution and loss of object features during feature extraction and compression. Due to these losses, the edge and the internal information of the object are lost, and there is a problem that the accuracy at the time of object segmentation is lowered. To solve these problems, we improved PSPNet, which is a semantic segmentation model. The multi-scale attention proposed to the conventional PSPNet was added to prevent feature loss of objects. The feature purification process was performed by applying the attention method to the conventional PPM module. By suppressing unnecessary feature information, eadg and texture information was improved. The proposed method trained on the Cityscapes dataset and use the segmentation index MIoU for quantitative evaluation. As a result of the experiment, the segmentation accuracy was improved by about 1.5% compared to the conventional PSPNet.
Breast cancer is the second leading cause of women cancer death in Korea. The key for reducing disease mortality is early detection. Although digital mammography (DM) has been credited as one of the major reasons for the early detection to decrease in breast cancer mortality observed in the last 20 years, DM is far from perfect for several limitations. Digital breast tomosynthesis (DBT) is expected to overcome some inherent limitations of conventional mammography caused by overlapping of normal tissue and pathological tissue during the standard 2D projections for the improved lesion margin visibility and early breast cancer detection. In this study, we compared a DM system and DBT system acquired with different thickness of breast phantom. We acquired breast phantom data with same average glandular dose (AGD) from 1 mGy to 4 mGy under same experimental condition. The contrast, micro-calcification measurement accuracy and observer study were conducted with breast phantom images. As a result, the higher accuracy of lesion detection with DBT system compared to DM system was demonstrated in this study. Furthermore, the pain of patients caused by severe compression can be reduced with DBT system. In conclusion, the results indicated that DBT system play an important role in breast cancer detection.
Owing to needs of biomechanical comprehension and analysis to obtain various medical treatment designs which are related with the spine in order to cure and diagnose LBP patients, the FE modeling and nonlinear analysis of lumbosacrum including a partial ilium and iliolumbar ligaments, were carried out. First, we investigated whether the geometrical configuration of vertebrae displayed by DICOM slice files is regular and normal condition. After constructing spinal vertebrae including a partial ilium, a sacrum and five lumbars (from L1 to L5)with anatomical shape reconstructed using softwares such as image modeler and CAD modeler, we added iliolumbar ligaments, lumbar ligaments, discs and facet joints, etc.. And also, we assigned material property and discretized the model using proper finite element types, thus it was completely modeled through the above procedure. For the verification of each segment, average sagittal ROM, average coronal ROM and average transversal ROM under various loading conditions(
Application of the left lateral tilt position has been recommended during cardiopulmonary resuscitation (CPR) of pregnant patients. However, the left lateral tilt could displace the left ventricle (LV) besides the gravid uterus and may compromise the cardiac pump mechanism of CPR. Thus, we investigated the effect of left lateral tilt on the spatial relationship between the anterior-posterior axis (AP axis), which represents the direction of sternal displacement during CPR, and the LV. We retrospectively reviewed the medical records and multidetector computed tomography (MDCT) scans of 90 patients who underwent virtual gastroscopy using MDCT. Virtual gastroscopy was performed with the patient both in the left lateral tilt position and in the supine position. On an axial image showing the maximal area of the LV, the angle between the AP axis and the LV axis (
Receive dynamic focusing with an array transducer can provide near optimum resolution only in the vicinity of transmit focal depth. A customary method to increase the depth of field is to combine several beams with different focal depths, with an accompanying decrease in the frame rate. In this Paper. we Present a simultaneous multiple transmit focusing method in which chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in a sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels. and the crossorelation function of any Pair of the signals has values smaller than the sidelobe levels of each autocorrelation function. This means that each chirp signal can be separated from the combined received signals and compressed into a short pulse. which is then individually focused on a separate receive beamformer. Next. the individually focused beams are combined to form a frame of image. Theoretically, any two chirp signals defined over two nonoverlapped frequency bands are mutually orthogonal In the present work. however, a tractional overlap of adjacent frequency bands is permitted to design more chirp signals within a given transducer bandwidth. The elevation of the rosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals We also observe that the Proposed method provides better images when the low frequency chirp is focused at a near Point and the high frequency chirp at a far point along the depth. better lateral resolution is obtained at the far field with reasonable SNR due to the SNR gain in Pulse compression Imaging .
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70