• Title/Summary/Keyword: Medical Image Analysis Software

Search Result 104, Processing Time 0.027 seconds

Usefulness of High-B-value Diffusion - Weighted MR Imaging for the Pre-operative Detection of Rectal Cancers (B-values 변환 자기공명영상: 국소 직장암 수술 전 검출을 위한 적합한 b-value 유용성)

  • Lee, Jae-Seung;Goo, Eun-Hoe;Lee, Sun-Yeob;Park, Cheol-Soo;Choi, Ji-Won
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.683-690
    • /
    • 2009
  • The purpose of this study is to evaluate the usefulness of high-b-values diffusion weighted magnetic resonance imaging for the preoperative detection of focal rectum cancers. 60patients with diffusion weighted imaging were evaluated for the presence of rectal cancers. Forty were male and twenty were female, and their ages ranged from 38 to 71 (mean, 56) years. Used equipment was 1.5Tesla MRI((GE, General Electric Medical System, Excite HD). Examination protocols were used the fast spin echo T2, T1 weighted imaging. All examination protocols were performed by the same location with diffusion weighted imaging for accuracy detection. The b-values used in DWI were 250, 500, 750, 1000. 1500, 2000$(s/mm^2)$. The rectum, bladder to tumor contrast-to-noise ratio (CNR) of MR images were quantitativlely analyzed using GE software Functool tool, four experienced radiologists and three radiotechnologists qualitatively evaluated image quality in terms of image artifacts, lesion conspicuity and rectal wall. These data were analysed by using ANOVA and Freedman test with each b-value(p<0.05). Contrast to noise ratio of rectum, bladder and tumor in b-value 1000 were 27.21, 24.44, respectively(p<0.05) and aADC value was $0.73\times10^{-3}$. As a qualitative analysis, the conspicuity and discrimination from the rectal wall of lesions were high results as $4.0\pm0.14$, $4.4\pm0.16$ on b-value 1000(p<0.05), image artifacts were high results as $4.8\pm0.25$ on b-value 2000(p<0.05). In conclusion, DWI was provided useful information with depicting the pre-operative detection of rectal cancers, High-b-value 1000 image was the most excellent DWI value.

Impact of viewing conditions on the performance assessment of different computer monitors used for dental diagnostics

  • Hastie, Thomas;Venske-Parker, Sascha;Aps, Johan K.M.
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.137-148
    • /
    • 2021
  • Purpose: This study aimed to assess the computer monitors used for analysis and interpretation of digital radiographs within the clinics of the Oral Health Centre of Western Australia. Materials and Methods: In total, 135 computer monitors(3 brands, 6 models) were assessed by analysing the same radiographic image of a combined 13-step aluminium step wedge and the Artinis CDDent 1.0® (Artinis Medical Systems B.V.®, Elst, the Netherlands) test object. The number of steps and cylindrical objects observed on each monitor was recorded along with the monitor's make, model, position relative to the researcher's eye level, and proximity to the nearest window. The number of window panels blocked by blinds, the outside weather conditions, and the number of ceiling lights over the surgical suite/cubicle were also recorded. MedCalc® version 19.2.1 (MedCalc Software Ltd®, Ostend, Belgium, https://www.medcalc.org; 2020) was used for statistical analyses(Kruskal-Wallis test and stepwise regression analysis). The level of significance was set at P<0.05. Results: Stepwise regression analysis showed that only the monitor brand and proximity of the monitor to a window had a significant impact on the monitor's performance (P<0.05). The Kruskal-Wallis test showed significant differences (P<0.05) in monitor performance for all variables investigated, except for the weather and the clinic in which the monitors were placed. Conclusion: The vast performance variation present between computer monitors implies the need for a review of monitor selection, calibration, and viewing conditions.

Texture Feature analysis using Computed Tomography Imaging in Fatty Liver Disease Patients (Fatty Liver 환자의 컴퓨터단층촬영 영상을 이용한 질감특징분석)

  • Park, Hyong-Hu;Park, Ji-Koon;Choi, Il-Hong;Kang, Sang-Sik;Noh, Si-Cheol;Jung, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some fatty liver patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of fatty liver. As the results of examining over 30 example CT images of fatty liver, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including Average Gray Level, Entropy 96.67%, Skewness 93.33%, and Smoothness while others showed a little low disease recognition rate: 83.33% for Uniformity 86.67% and for Average Contrast 80%. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of fatty liver and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading.

Texture Feature Analysis Using a Brain Hemorrhage Patient CT Images (전산화단층촬영 영상을 이용한 뇌출혈 질감특징분석)

  • Park, Hyonghu;Park, Jikoon;Choi, Ilhong;Kang, Sangsik;Noh, Sicheol;Jung, Bongjae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.369-374
    • /
    • 2015
  • In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some brain hemorrhage patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of brain hemorrhage. As the results of examining over 40 example CT images of brain hemorrhage, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including average gray level, average contrast, smoothness, and Skewness while others showed a little low disease recognition rate: 95% for uniformity and 87.5% for entropy. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of brain hemorrhage and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading.

Research and improvement of image analysis and bar code and QR recognition technology for the development of visually impaired applications (시각장애인 애플리케이션 개발을 위한 이미지 분석과 바코드, QR 인식 기술의 연구 및 개선)

  • MinSeok Cho;MinKi Yoon;MinSu Seo;YoungHoon Hwang;Hyun Woo;WonWhoi Huh
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.861-866
    • /
    • 2023
  • Individuals with visual impairments face difficulties in accessing accurate information about medical services and medications, making it challenging for them to ensure proper medication intake. While there are healthcare laws addressing this issue, there is a lack of standardized solutions, and not all over-the-counter medications are covered. Therefore, we have undertaken the design of a mobile application that utilizes image recognition technology, barcode scanning, and QR code recognition to provide guidance on how to take over-the-counter medications, filling the existing gaps in the knowledge of visually impaired individuals. Currently available applications for individuals with visual impairments allow them to access information about medications. However, they still require the user to remember which specific medication they are taking, posing a significant challenge. In this research, we are optimizing the camera capture environment, user interface (UI), and user experience (UX) screens for image recognition, ensuring greater accessibility and convenience for visually impaired individuals. By implementing the findings from our research into the application, we aim to assist visually impaired individuals in acquiring the correct methods for taking over-the-counter medications.

Development of Automatized Quantitative Analysis Method in CT Images Evaluation using AAPM Phantom (AAPM Phantom을 이용한 CT 영상 평가 시 자동화된 정량적 분석 방법 개발)

  • Noh, Sung Sun;Um, Hyo Sik;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.163-173
    • /
    • 2014
  • When evaluating the spatial resolution images and evaluation of low contrast resolution using CT standard phantom, and might present a automated quantitative evaluation method for minimizing errors by subjective judgment of the evaluator be, and try to evaluate the usefulness. 120kVp and 250mAs, 10mm collimation, SFOV(scan field of view) of 25cm or more than, exposure conditions DFOV(display field of view) of 25cm, and were evaluated the 24 passing images and 20 failing images taken using a standard reconstruction algorithm by using the Nuclear Associates, Inc. AAPM CT Performance Phantom(Model 76-410). Quantitative evaluation of low contrast resolution and spatial resolution was using an evaluation program that was self-developed using the company Mathwork Matlab(Ver. 7.6. (R2008a)) software. In this study, the results were evaluated using the evaluation program that was self-developed in the evaluation of images using CT standard phantom, it was possible to evaluate an objective numerical qualitative evaluation item. First, if the contrast resolution, if EI is 0.50, 0.51, 0.52, 0.53, as a result of evaluating quantitatively the results were evaluated qualitatively match. Second, if CNR is -0.0018~-0.0010, as a result of evaluating quantitatively the results were evaluated qualitatively match. Third, if the spatial resolution, as a result of using a image segmentation technique, and automatically extract the contour boundary of the hole, as a result of evaluating quantitatively the results were evaluated qualitatively match.

Automatic Detection of Kidney Tumor from Abdominal CT Scans (복부 CT 영상에서 신장암의 자동추출)

  • 김도연;노승무;조준식;김종철;박종원
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.803-808
    • /
    • 2002
  • This paper describes automatic methods for detection of kidney and kidney tumor on abdominal CT scans. The abdominal CT images were digitalized using a film digitizer and a gray-level threshold method was used to segment the kidney. Based on texture analysis results, which were perform on sample images of kidney tumors, SEED region of kidney tumor was selected as result of homogeneity test. The average and standard deviation, which are representative statistical moments, were used to as an acceptance criteria for homogeneous test. Region growing method was used to segment the kidney tumor from the center pixel of selected SEED region using a gray-level value as an acceptance criteria for homogeneity test. These method were applied to 113 images of 9 cases, which were scanned by GE Hispeed Advantage CT scanner and digitalized by Lumisvs LS-40 film digitizer. The sensitivity was 85% and there was no false-positive results.

Echocardiography Core Laboratory Validation of a Novel Vendor-Independent Web-Based Software for the Assessment of Left Ventricular Global Longitudinal Strain

  • Ernest Spitzer;Benjamin Camacho;Blaz Mrevlje;Hans-Jelle Brandendburg;Claire B. Ren
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.3
    • /
    • pp.135-141
    • /
    • 2023
  • BACKGROUND: Global longitudinal strain (GLS) is an accurate and reproducible parameter of left ventricular (LV) systolic function which has shown meaningful prognostic value. Fast, user-friendly, and accurate tools are required for its widespread implementation. We aim to compare a novel web-based tool with two established algorithms for strain analysis and test its reproducibility. METHODS: Thirty echocardiographic datasets with focused LV acquisitions were analyzed using three different semi-automated endocardial GLS algorithms by two readers. Analyses were repeated by one reader for the purpose of intra-observer variability. CAAS Qardia (Pie Medical Imaging) was compared with 2DCPA and AutoLV (TomTec). RESULTS: Mean GLS values were -15.0 ± 3.5% from Qardia, -15.3 ± 4.0% from 2DCPA, and -15.2 ± 3.8% from AutoLV. Mean GLS between Qardia and 2DCPA were not statistically different (p = 0.359), with a bias of -0.3%, limits of agreement (LOA) of 3.7%, and an intraclass correlation coefficient (ICC) of 0.88. Mean GLS between Qardia and AutoLV were not statistically different (p = 0.637), with a bias of -0.2%, LOA of 3.4%, and an ICC of 0.89. The coefficient of variation (CV) for intra-observer variability was 4.4% for Qardia, 8.4% 2DCPA, and 7.7% AutoLV. The CV for inter-observer variability was 4.5%, 8.1%, and 8.0%, respectively. CONCLUSIONS: In echocardiographic datasets of good image quality analyzed at an independent core laboratory using a standardized annotation method, a novel web-based tool for GLS analysis showed consistent results when compared with two algorithms of an established platform. Moreover, inter- and intra-observer reproducibility results were excellent.

Rabbit maxillary sinus augmentation model with simultaneous implant placement: differential responses to the graft materials

  • Kim, Young-Sung;Kim, Su-Hwan;Kim, Kyoung-Hwa;Jhin, Min-Ju;Kim, Won-Kyung;Lee, Young-Kyoo;Seol, Yang-Jo;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.204-211
    • /
    • 2012
  • Purpose: This study was performed to establish an experimental rabbit model for single-stage maxillary sinus augmentation with simultaneous implant placement. Methods: Twelve mature New Zealand white rabbits were used for the experiments. The rabbit maxillary sinuses were divided into 3 groups according to sinus augmentation materials: blood clot (BC), autogenous bone (AB), and bovine-derived hydroxyapatite (BHA). Small titanium implants were simultaneously placed in the animals during the sinus augmentation procedure. The rabbits were sacrificed 4 and 8 weeks after surgery and were observed histologically. Histomorphometric analyses using image analysis software were also performed to evaluate the parameters related to bone regeneration and implant-bone integration. Results: The BC group showed an evident collapse of the sinus membrane and limited new bone formation around the original sinus floor at 4 and 8 weeks. In the AB group, the sinus membrane was well retained above the implant apex, and new bone formation was significant at both examination periods. The BHA group also showed retention of the elevated sinus membrane above the screw apex and evident new bone formation at both points in time. The total area of the mineral component (TMA) in the area of interest and the bone-to-implant contact did not show any significant differences among all the groups. In the AB group, the TMA had significantly decreased from 4 to 8 weeks. Conclusions: Within the limits of this study, the rabbit sinus model showed satisfactory results in the comparison of different grafting conditions in single-stage sinus floor elevation with simultaneous implant placement. We found that the rabbit model was useful for maxillary sinus augmentation with simultaneous implant placement.

Intelligent Diagnosis Assistant System of Capsule Endoscopy Video Through Analysis of Video Frames (영상 프레임 분석을 통한 대용량 캡슐내시경 영상의 지능형 판독보조 시스템)

  • Lee, H.G.;Choi, H.K.;Lee, D.H.;Lee, S.C.
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.33-48
    • /
    • 2009
  • Capsule endoscopy is one of the most remarkable inventions in last ten years. Causing less pain for patients, diagnosis for entire digestive system has been considered as a most convenience method over a normal endoscope. However, it is known that the diagnosis process typically requires very long inspection time for clinical experts because of considerably many duplicate images of same areas in human digestive system due to uncontrollable movement of a capsule endoscope. In this paper, we propose a method for clinical diagnosticians to get highly valuable information from capsule-endoscopy video. Our software system consists of three global maps, such as movement map, characteristic map, and brightness map, in temporal domain for entire sequence of the input video. The movement map can be used for effectively removing duplicated adjacent images. The characteristic and brightness maps provide frame content analyses that can be quickly used for segmenting regions or locating some features(such as blood) in the stream. Our experiments show the results of four patients having different health conditions. The result maps clearly capture the movements and characteristics from the image frames. Our method may help the diagnosticians quickly search the locations of lesion, bleeding, or some other interesting areas.

  • PDF