• 제목/요약/키워드: Medical Image Analysis

Search Result 940, Processing Time 0.023 seconds

Research recognition and image about dental technician (치과기공사에 대한 인식정도와 이미지 조사 - 대구지역을 중심으로 -)

  • Jung, Hyo-Kyung;Kim, Jeong-Sook;Lee, Seung-Hee
    • Journal of Technologic Dentistry
    • /
    • v.32 no.2
    • /
    • pp.91-102
    • /
    • 2010
  • Purpose : The purpose of study was 500 people who are not related to dentistry in order to survey image about dental technicians. Methods : The subjects were composed of 500 people who are not related in Daegu Metropolitan city. This study was done using the Statistical Package for Social Sciences 17.0 for Windows. As for the analysis methods, the study used the frequency analysis, percentage, mean, t-test, analysis of variance. Results : The score on the image of dental technicians declined in the order of occupational image(2.98), work image(3.14), personal image(3.26), social image(2.87). 'It is hard and stressful' in the occupational image had the highest score with 3.69, 'Dentist and companionship are strong' in the occupational image had the lowest score with 2.21. 'It need expert knowledge and a skilled technology' in the work image had the highest score with 3.69, 'Health medical treatment side of health technique is occupation.' in the work image had the lowest score with 3.69. 'It always work busily' in the personal image had the highest score with 3.69, 'It is value and is effect work.' in the personal image had the lowest score with 3.69. 'An employment is easy after license acquisition.' in the social image had the highest score with 3.69, 'It admit independence' in the social image had the lowest score with 3.69. Conclusion : Dental technition research in order to image improvement and recognition, as the medical professional must construct the desirable dental technition image and recognition.

ANALYSIS BY SYNTHESIS FOR ESTIMATION OF DOSE CALCULATION WITH gMOCREN AND GEANT4 IN MEDICAL IMAGE

  • Lee, Jeong-Ok;Kang, Jeong-Ku;Kim, Jhin-Kee;Kim, Bu-Gil;Jeong, Dong-Hyeok
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.146-148
    • /
    • 2012
  • The use of GEANT4 simulation toolkit has increased in the radiation medical field for the design of treatment system and the calibration or validation of treatment plans. Moreover, it is used especially on calculating dose simulation using medical data for radiation therapy. However, using internal visualization tool of GEANT4 detector constructions on expressing dose result has deficiencies because it cannot display isodose line. No one has attempted to use this code to a real patient's data. Therefore, to complement this problem, using the result of gMocren that is a three-dimensional volume-visualizing tool, we tried to display a simulated dose distribution and isodose line on medical image. In addition, we have compared cross-validation on the result of gMocren and GEANT4 simulation with commercial radiation treatment planning system. We have extracted the analyzed data of dose distribution, using real patient's medical image data with a program based on Monte Carlo simulation and visualization tool for radiation isodose mapping.

Encryption-based Image Steganography Technique for Secure Medical Image Transmission During the COVID-19 Pandemic

  • Alkhliwi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.83-93
    • /
    • 2021
  • COVID-19 poses a major risk to global health, highlighting the importance of faster and proper diagnosis. To handle the rise in the number of patients and eliminate redundant tests, healthcare information exchange and medical data are transmitted between healthcare centres. Medical data sharing helps speed up patient treatment; consequently, exchanging healthcare data is the requirement of the present era. Since healthcare professionals share data through the internet, security remains a critical challenge, which needs to be addressed. During the COVID-19 pandemic, computed tomography (CT) and X-ray images play a vital part in the diagnosis process, constituting information that needs to be shared among hospitals. Encryption and image steganography techniques can be employed to achieve secure data transmission of COVID-19 images. This study presents a new encryption with the image steganography model for secure data transmission (EIS-SDT) for COVID-19 diagnosis. The EIS-SDT model uses a multilevel discrete wavelet transform for image decomposition and Manta Ray Foraging Optimization algorithm for optimal pixel selection. The EIS-SDT method uses a double logistic chaotic map (DLCM) is employed for secret image encryption. The application of the DLCM-based encryption procedure provides an additional level of security to the image steganography technique. An extensive simulation results analysis ensures the effective performance of the EIS-SDT model and the results are investigated under several evaluation parameters. The outcome indicates that the EIS-SDT model has outperformed the existing methods considerably.

A comparison with Result of Normalized image to Different Template image on Statistical Parametric Mapping of ADHD children patients (과잉행동장애 어린이의 SPM(Statistical Parametric Mapping)분석에서 서로 다른 Template image로 규격화된 SPEC 영상의 결과 비교)

  • Shin, Dong-Ho;Park, Soung-Ock;Kwon, Soo-Il;Joh, Chol-Woo;Yoon, Seok-Nam
    • Journal of radiological science and technology
    • /
    • v.26 no.2
    • /
    • pp.71-78
    • /
    • 2003
  • We studied 64 ADHD children patients group($4{\sim}15\;ys$, mean age : $8{\pm}2.6\;ys$. M/F:52/12) and 12 normal group($6{\sim}7\;ys$, mean age : $9.4{\pm}3.4\;ys$, M/F:8/4) of the brain has been used to analysis of blood flow between normal and ADHD group. For analysis of Children ADHD, we used 12 children's mean brain images and made Template image of SPM99 program. In increase of blood flow(P-value 0.05), the result of normalized images to Template image to offer from SPM99 program, showed significant cluster in inter-Hemispheric and occipital Lobe, in the case of normalized images to children template image, showed inter-hemispheric and parietal lobe.

  • PDF

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

Usefulness of Temporal Subtraction for The Detection of Interval Changes of Interstitial Lung Diseases on Chest Radiographs

  • Higashida, Yoshiharu;Ideguchi, Tadamitsu;Muranaka, Toru;Akazawa, Fumio;Miyajima, Ryuichi;Tabata, Nobuyuki;Ikeda, Hirotaka;Ohki, Masafumi;Toyofuku, Fukai;Doi, Kunio
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.454-456
    • /
    • 2002
  • The evaluation of interval changes between temporally sequential chest radiographs is necessary for the detection of new abnormalities or interval changes, such as pulmonary nodules and interstitial disease. For interstitial lung disease, the interval changes are very important for diagnosis and treatment. Especially, interstitial lung disease may show rapid changes in the radiographs, show changes in the entire lung field in minute detail, or show changes in multiple parts depending on the type. It is therefore difficult to have an accurate grasp of the condition of the disease only with conventional radiographs. The temporal subtraction technique which was developed at the University of Chicago, provides a subtraction image of the current warped image and the previous image. A temporal subtraction image, shows only differences and changes between the two images, can be very useful for a diagnosis of interstitial lung disease. However, the evaluation of the temporal subtraction technique for interstitial lung disease using receiver operating characteristic(ROC) studies has not been reported yet. Therefore, we have evaluated the clinical usefulness of a temporal subtraction technique for detection of interval changes of interstitial lung disease by ROC analysis.

  • PDF

Design and Implementation of Bioluminescence Signal Analysis Tool

  • Jeong, Hye-Jin;Lee, Byeong-Il;Hwang, Hae-Gil;Song, Soo-Min;Min, Jung-Joon;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1580-1587
    • /
    • 2006
  • The term molecular imaging can be broadly defined as the in vivo characterization and measurement of biologic processes at the cellular and molecular level. Optical imaging that has highly reproducibility and repetition used in molecular imaging research. In the bioluminescence imaging, animals carrying the luciferase gene are imaged with a cooled CCD(Charge-Coupled Device) camera to pick up the small number of photons transmitted through tissues. Molecular imaging analysis will allow us to observe the incipience and progression of the disease. But hardware device for molecular imaging and software for molecular image analysis were dependent on imports. In this paper, we suggest image processing methods and designed software for bioluminescence signal analysis. And we demonstrated high correlation(r=0.99) between our software's photon counts and commercial software's photon counts. ROI function and processing functions were accomplished without error. This study have the importance of the development software for bioluminescence image processing and analysis. And this study built the foundations for creative development of analysis methods. We expected this study lead the development of image technology.

  • PDF

A Versatile Medical Image Enhancement Algorithm Based on Wavelet Transform

  • Sharma, Renu;Jain, Madhu
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1170-1178
    • /
    • 2021
  • This paper proposed a versatile algorithm based on a dual-tree complex wavelet transform for intensifying the visual aspect of medical images. First, the decomposition of the input image into a high sub-band and low-sub-band image is done. Further, to improve the resolution of the resulting image, the high sub-band image is interpolated using Lanczos interpolation. Also, contrast enhancement is performed by singular value decomposition (SVD). Finally, the image reconstruction is achieved by using an inverse wavelet transform. Then, the Gaussian filter will improve the visual quality of the image. We have collected images from the hospital and the internet for quantitative and qualitative analysis. These images act as a reference image for comparing the effectiveness of the proposed algorithm with the existing state-of-the-art. We have divided the proposed algorithm into several stages: preprocessing, contrast enhancement, resolution enhancement, and visual quality enhancement. Both analyses show the proposed algorithm's effectiveness compared to existing methods.

A Study on the Usefulness of the New Foot Oblique Projection (새로운 발 사방향 검사법의 유용성에 관한 연구)

  • Kim, Min-Suk;Joo, Young-Cheol;Lee, Seung-Keun
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.443-449
    • /
    • 2021
  • In this study, the purpose is to present the foot inclination angle for realizing an image similar to that of the existing examination method and to present the clinical usefulness of the new examination method through comparison between the existing examination method and the newly designed standing foot oblique projection. A foot phantom was used, and the magnification of the image according to the angle was quantitatively evaluated by attaching a nut to the position of the cuboid of the phantom. The internal oblique image acquired using a 30° wedge was set as the standard image. And that image was compared with the images acquired by changing the angle of the foot from 20° to 65° at intervals of 5°. Image evaluation was performed by 3 radiological technologists, and qualitative evaluation using a Likert 5-point scale for evaluation items of true oblique view and quantitative evaluation of the value obtained by measuring the diameter of a nut in each image were performed as image evaluation. For data analysis, reliability analysis between the measure and comparative analysis of the average value for each angle were performed. The qualitative evaluation score for each image was 4.5 to 5 points for most questions in the case of the standard image. And 4 points or less for most questions in the images with a foot angle of 45° or less, and an evaluation score close to the standard image was obtained in the image of 50° or more. And in the quantitative evaluation, the diameter of the nut was measured to be 9.28~9.56 mm. The qualitative evaluation showed a reliability of 0.95~1.0 and the quantitative evaluation was 0.62. As a result of comparing and analyzing the average of the quantitative and qualitative average values for each angle image, the group with the average value most similar to the standard image was images obtained at 55° and 60°, and in the post-analysis, the images of both groups were the same group as the standard image(p<0.01). As a result of this study, it was found that the angle of inclination of the foot for realizing the image most similar to the existing image in the standing foot oblique projection is 55°~60°. In addition, if this test method is applied to the clinic, it is believed that it will help prevent safety accidents such as falls during the test and improve test efficiency by minimizing the movement of patients for the test.

Deep Learning in Genomic and Medical Image Data Analysis: Challenges and Approaches

  • Yu, Ning;Yu, Zeng;Gu, Feng;Li, Tianrui;Tian, Xinmin;Pan, Yi
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.204-214
    • /
    • 2017
  • Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.