Kim, Seung-Jin;Jeong, Chang-Won;No, Si-Hyeong;Kim, Ji-Eon;Kim, Tae-Hoon;Jun, Hong Yong;Lee, Yun Oh;Yoon, Kwon-Ha
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.275-276
/
2018
본 논문에서는 원광대학교병원 의료정보시스템의 임상데이터를 OHDSI 가 제안하는 공통데이터 모델로 변환하여 표준화 시스템 구축에 대해서 기술한다. 또한, 검색속도 향상을 위해 인덱싱 기법을 적용한 성능평가 결과를 보인다. 구축된 표준화 시스템은 다양한 임상연구에 활용될 것을 기대하고 있다.
Based on the accumulation of medical big data, advances in medical artificial intelligence technology facilitate the timely treatment of disease through the reading the medical images and the increase of prediction speed and accuracy of diagnoses. In addition, these advances are expected to spark significant innovations in reducing medical costs and improving care quality. There are already approximately 40 FDA approved products in the US, and more than 10 products with K-FDA approval in Korea. Medical applications and services based on artificial intelligence are expected to spread rapidly in the future. Furthermore, the evolution of medical artificial intelligence technology is expanding the boundaries or limits of various related issues such as reference standards and specifications, ethical and clinical validation issues, and the harmonization of international regulatory systems.
Journal of Korean Society of Industrial and Systems Engineering
/
v.42
no.4
/
pp.126-134
/
2019
Nowadays, since there are so many big data available everywhere, those big data can be used to find useful information to improve design and operation by using various analysis methods such as data mining. Especially if we have event log data that has execution history data of an organization such as case_id, event_time, event (activity), performer, etc., then we can apply process mining to discover the main process model in the organization. Once we can find the main process from process mining, we can utilize it to improve current working environment. In this paper we developed a new method to find a final diagnosis of a patient, who needs several procedures (medical test and examination) to diagnose disease of the patient by using process mining approach. Some patients can be diagnosed by only one procedure, but there are certainly some patients who are very difficult to diagnose and need to take several procedures to find exact disease name. We used 2 million procedure log data and there are 397 thousands patients who took 2 and more procedures to find a final disease. These multi-procedure patients are not frequent case, but it is very critical to prevent wrong diagnosis. From those multi-procedure taken patients, 4 procedures were discovered to be a main process model in the hospital. Using this main process model, we can understand the sequence of procedures in the hospital and furthermore the relationship between diagnosis and corresponding procedures.
International journal of advanced smart convergence
/
v.13
no.2
/
pp.166-171
/
2024
Recently, there has been an increasing trend in the role of social media in tourism marketing. We analyze changes in tourism marketing trends using tourism marketing keywords through social media networks. The aim is to understand marketing trends based on the analyzed data and effectively create, maintain, and manage customers, as well as efficiently supply tourism products. Data was collected using web data from platforms such as Naver, Google, and Daum through TexTom. The data collection period was set for one year, from December 1, 2022, to December 1, 2023. The collected data, after undergoing refinement, was analyzed as keyword networks based on frequency analysis results. Network visualization and CONCOR analysis were conducted using the Ucinet program. The top words in frequency were 'tourists,' 'promotion,' 'travel,' and 'research.' Clusters were categorized into four: tourism field, tourism products, marketing, and motivation for visits. Through this, it was confirmed that tourism marketing is being conducted in various tourism sectors such as MICE, medical tourism, and conventions. Utilizing digital marketing via online platforms, tourism products are promoted to tourists, and unique tourism products are developed to increase city branding and tourism demand through integrated tourism content. We identify trends in tourism marketing, providing tourists with a positive image and contributing to the activation of local tourism.
Hyun Suk Kim;Heejeong Jeong;Hyungbin Moon;Sang Hyun Park
Journal of Radiation Protection and Research
/
v.49
no.1
/
pp.40-49
/
2024
Background: This study aimed to prioritize policy measures to improve radiation safety management in medical institutions using the analytic hierarchy process. Materials and Methods: It adopted three policy options-engineering, education, and enforcement-to categorize safety management measures, the so-called Harvey's 3Es. Then, the radiation safety management measures obtained from the current system and other studies were organized into action plan categories. Using the derived model, this study surveyed 33 stakeholders of radiation safety management in medical institutions and analyzed the importance of each measure. Results and Discussion: As a result, these stakeholders generally identified enforcement as the most important factor for improving the safety management system. The study also found that radiation safety officers and medical physicists perceived different measures as important, indicating clear differences in opinions among stakeholders, especially in improving quality assurance in radiation therapy. Hence, the process of coordination and consensus is likely to be critical in improving the radiation safety management system. Conclusion: Stakeholders in the medical field consider enforcement as the most critical factor in improving their safety management systems. Specifically, the most crucial among the six specific action plans was the "reinforcement of the organization and workforce for safety management," with a relative importance of 25.7%.
Journal of Physiology & Pathology in Korean Medicine
/
v.19
no.2
/
pp.561-567
/
2005
We statistically analyzed the relationship between the constitution and the thickness and stiffness of skin depending on sex and age, using 1079 clinical data registered to SCIB(Sasang constitution Information Bank), and the following results are obtained : The thickness of skin has big discrimination ability in classification of Taeeumin and Soyangin, especially in women and in ages 21 or more. The stiffness of skin also has big discrimination ability in classification of Taeeumin and Soeumin, especially in Taeumin women and Soeumin man and in ages 21-60. The differences stated above have been proved to be meaningful enough by Chi-square test.
Journal of Physiology & Pathology in Korean Medicine
/
v.19
no.2
/
pp.536-543
/
2005
We statistically analyzed the relationship between the constitution and the refineness and tactile of skin depending on sex and age, using 1079 clinical data registered to SCIB(Sasang constitution Information Bank), and the following results are obtained: The thickness of skin has big discrimination ability in classification of Taeeumin and Soyangin, especially in women and in ages 21 or more. The stiffness of skin also has big discrimination ability in classification of Taeeumin and Soeumin, especially in Taeumin women and Soeumin man and in ages 21-60. The differences stated above have been proved to be meaningful enough by Chi-square test.
Seonhwa Hwang;Yong Gwon Soung;Seong Uk Kang;Donghan Yu;Haeran Baek;Jae-Won Jang
Dementia and Neurocognitive Disorders
/
v.22
no.4
/
pp.121-129
/
2023
Background and Purpose: As it becomes an aging society, interest in senile diseases is increasing. Alzheimer's dementia (AD) and osteoporosis are representative senile diseases. Various studies have reported that AD and osteoporosis share many risk factors that affect each other's incidence. This aimed to determine if active medication treatment of AD could affect the development of osteoporosis. Methods: The Health Insurance Review and Assessment Service provided data consisting of diagnosis, demographics, prescription drug, procedures, medical materials, and healthcare resources. In this study, data of all AD patients in South Korea who were registered under the national health insurance system were obtained. The cohort underwent conversion to an Observational Medical Outcomes Partnership-Common Data Model version 5 format. Results: This study included 11,355 individuals in the good persistent group and an equal number of 11,355 individuals in the poor persistent group from the National Health Claims database for AD drug treatment. In primary analysis, the risk of osteoporosis was significantly higher in the poor persistence group than in the good persistence group (hazard ratio, 1.20 [95% confidence interval, 1.09-1.32]; p<0.001). Conclusions: We found that the good persistence group treated with anti-dementia drugs for AD was associated with a significant lower risk of osteoporosis in this nationwide study. Further studies are needed to clarify the pathophysiological link in patients with two chronic diseases.
Journal of Physiology & Pathology in Korean Medicine
/
v.35
no.5
/
pp.132-138
/
2021
Artificial intelligence technology sheds light on new ways of innovating acupuncture research. As acupoint selection is specific to target diseases, each acupoint is generally believed to have a specific indication. However, the specificity of acupoint selection may be not always same with the specificity of acupoint indication. In this review, we propose that the specificity of acupoint indication can be inferred from clinical data using reverse inference. Using forward inference, the prescribed acupoints for each disease can be quantified for the specificity of acupoint selection. Using reverse inference, targeted diseases for each acupoint can be quantified for the specificity of acupoint indication. It is noteworthy that the selection of an acupoint for a particular disease does not imply the acupoint has specific indications for that disease. Electronic medical record includes various symptoms and chosen acupoint combinations. Data mining approach can be useful to reveal the complex relationships between diseases and acupoints from clinical data. Combining the clinical information and the bodily sensation map, the spatial patterns of acupoint indication can be further estimated. Interoperable medical data should be collected for medical knowledge discovery and clinical decision support system. In the era of artificial intelligence, machine learning can reveal the associations between diseases and prescribed acupoints from large scale clinical data warehouse.
Purpose: Vital sign are used to help assess the general physical health of a person, give clues to possible diseases, and show progress toward recovery. Researchers are using vital sign data and AI(artificial intelligence) to manage a variety of diseases and predict mortality. In order to analyze vital sign data using AI, it is important to select and extract vital sign data suitable for research purposes. Methods: We developed a method to visualize vital sign and early warning scores by processing retrospective vital sign data collected from EMR(electronic medical records) and patient monitoring devices. The vital sign data used for development were obtained using the open EMR big data MIMIC-III and the wearable patient monitoring device(CareTaker). Data processing and visualization were developed using Python. We used the development results with machine learning to process the prediction of mortality in ICU patients. Results: We calculated NEWS(National Early Warning Score) to understand the patient's condition. Vital sign data with different measurement times and frequencies were sampled at equal time intervals, and missing data were interpolated to reconstruct data. The normal and abnormal states of vital sign were visualized as color-coded graphs. Mortality prediction result with processed data and machine learning was AUC of 0.892. Conclusion: This visualization method will help researchers to easily understand a patient's vital sign status over time and extract the necessary data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.