• Title/Summary/Keyword: Median lethal concentration ($LC_{50}$)

Search Result 46, Processing Time 0.034 seconds

Study on Inhalation Toxicity of 1-Hexene in SD Rats (SD Rats를 이용 1-hexene의 흡입독성 연구)

  • 김현영;임철홍;정용현;이권섭;이성배;이준연;한정희;전윤석;이용묵
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.4
    • /
    • pp.211-221
    • /
    • 2001
  • The purpose of this study was to investigate the acute (4 hours) and repeated-dose (6 hours a day, 5 days a week, 4 weeks) toxic effects of 1-hexene on Sprague-Dawley (SD) rats which were treated by inhalation. The results were as follows; 1. The median lethal concentration(LC$_{50}$) was estimated 52,694 ppm (confidence limit 95%; 49,494~55,447 ppm) in acute inhalation. Abnormal clinical signs related to the 1-Hexene were not observed with the acute inhalation dose. Cross findings of necropsy revealed on evidence of specific toxicity related to the 1-hexene. II. By repeated inhalation exposure the body weight of male were more or less reduced by the dose of 2,500 ppm and 5,000 ppm compared with control group. However there were no significant variation hematology and blood biochemistry for the exposed rats compared with the control rats. Abnormal clinical signs and gross findings of necropsy related to the 1-hexene were not shown. In conclusion when we exposed 1-hexene to SD rats for 4 weeks, 5 days per week, 6 hours per day, the Lowest observed effect level (LOEL) was over 2,500 ppm and Non observed effect level (NOEL) was below 500 ppm.

  • PDF

Acute Toxicity to Peptone Concentrations in the Polychaete Perinereis aibuhitensis under Laboratory Culture

  • Kang, Kyoung-Ho;Zhang, Litao;Ahn, Sam-Young;Kahng, Hyung-Yeel;Zhang, Zhifeng;Sui, Zhenghong
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.205-209
    • /
    • 2011
  • Organic pollution causes eutrophication and dystrophication, which occur when excessive amounts of organic matter enters seawater. Eutrophication can contaminate sediment and harm aquaculture. Polychaeta species have been shown to restore eutrophic sediment. In this study, we used peptone to simulate a eutrophic environment and detect the levels at which eutrophication became toxic to the polychaete Perinereis aibuhitensis. Peptone concentrations were 0, 100, 200, and 500 mg/L. The median lethal concentrations were 950.35 mg/L at 48 h, 340.34 mg/L at 72 h, and 120.22 mg/L at 96 h, which are much higher than those of other aquatic species. Polychaeta species are highly tolerant of eutrophication. During the 15-day long-term experiment, sediment loss on ignition, as well as seawater total organic carbon and total nitrogen all decreased significantly (P<0.05). However, $NH_4^+$ concentration increased with time. Perinereis aibuhitensis slowed the increment of $NH_4^+$ but could not prevent its increase. Our results indicate that this polychaete is helpful in the recovery of seawater and sediment from eutrophication.

Exposure to Copper (II) Chloride Induces Behavioral and Endocrine Changes in Zebrafish (CuCl2 노출에 의해 유도되는 제브라피시의 행동과 내분비계의 변화)

  • Sung, Jiwon;Lee, Jeongwon;Lee, Seungheon
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.321-330
    • /
    • 2020
  • The aim of this study was to investigate the effect of copper (II) chloride (CuCl2) on zebrafish. Zebrafish were exposed to various CuCl2 concentrations and subjected to different exposure times to determine the median lethal concentration (LC50) values. To evaluate stress responses, we measured whole-body cortisol levels and behavioral parameters using the open field test (OFT) or the novel tank test (NTT). The zebrafish were exposed to CuCl2 solution at concentrations of 1.5-150 ㎍/l or a vehicle for 1 hr before behavioral tests or sample collection for whole-body cortisol. The LC50 values were 30.3, 25.3, and 14.8 ㎍/l at 24, 48, and 96 hr, respectively. The NTT showed that mobility, velocity, and distance covered were significantly lower in zebrafish exposed to CuCl2 than in the control group (p<0.05), while the turn angle was significantly higher in zebrafish exposed to a CuCl2 concentration of 150 ㎍/l than in the control group (p<0.05). The OFT also showed that mobility, velocity, and distance covered were significantly lower and the turn angle and meandering were significantly higher in zebrafish exposed to all concentrations of CuCl2 than in the control group (p<0.05). The whole-body cortisol levels were significantly higher in zebrafish exposed to CuCl2 than in the control group (p<0.05). These results suggest that exposure to lethal CuCl2 concentrations induces an intense toxic and stress response in zebrafish, causing behavioral changes and increasing whole-body cortisol levels.

Influence of Heavy Metals, Ammonia, and Organotin Compounds on the Survival of Arkshell Clams, Scapharca broughtonii (중금속, 암모니아, 유기주석화합물이 피조개 (Scapharca broughtonii) 의 생존에 미치는 영향)

  • Kim, Chan-Kook;Kim, Dong-Hoon;Lee, Jung-Suk;Lee, Kyu-Tae
    • The Korean Journal of Malacology
    • /
    • v.20 no.1
    • /
    • pp.93-105
    • /
    • 2004
  • Arkshell clams, Scapharca broughtonii, are economically important edible bivalves and widely cultivated in the Southern coast of Korea. Recently, the production of S. broughtonii has been dramatically decreased and various reasons including chemical pollution were suspected to be related to the production declines. However, it remains unknown whether the chemical pollution levels of the surrounding environments were high enough for the biological and ecological disturbance for the population of S. broughtonii, because no systematic toxicological study using S. broughtonii has been conducted previously. In the present study, we exposed arkshell clams, S. broughtonii to various waterborne pollutants including heavy metals (Cd, Cu and Hg), ammonia and organotins (tributyltin and triphenyltin) to determine the effect concentrations of these pollutants for the survival of S. broughtonii for 20 days. The median lethal concentrations ($LC_50$) of S. broughtonii were 2.1 mg/l for Cd, 0.065 mg/l for Cu, 0.40 mg/l for Hg, 79.4 mg/l for total ammonia (1.9 mg/l for unionized ammonia), 0.5 ${\mu}$g/l for TBT, and 14${\mu}$g/l for TPhT. Lethal toxicity of the most pollutants increased with both exposure duration and concentration. The toxicity of TBT was greatest for S. broughtonii, followed by TPhT > Cu > Hg > Cd > ammonia. The sensitivities of S. broughtonii to heavy metals and TBT were comparable to those of other aquatic organisms, but they were relatively tolerable to ammonia. The environmental concentrations of the tested pollutants were compared with the effect concentrations of those for the survival of S. broughtonii to assess the potential risks of the pollutants in the field conditions.

  • PDF

Study on the Chemical Management - 2. Comparison of Classification and Health Index of Chemicals Regulated by the Ministry of Environment and the Ministry of the Employment and Labor (화학물질 관리 연구-2. 환경부와 고용노동부의 관리 화학물질의 구분, 노출기준 및 독성 지표 등의 특성 비교)

  • Kim, Sunju;Yoon, Chungsik;Ham, Seunghon;Park, Jihoon;Kim, Songha;Kim, Yuna;Lee, Jieun;Lee, Sangah;Park, Donguk;Lee, Kwonseob;Ha, Kwonchul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.58-71
    • /
    • 2015
  • Objectives: The aims of this study were to investigate the classification system of chemical substances in the Occupational Safety and Health Act(OSHA) and Chemical Substances Control Act(CSCA) and to compare several health indices (i.e., Time Weighted Average (TWA), Lethal Dose ($LD_{50}$), and Lethal Concentration ($LC_{50}$) of chemical substances by categories in each law. Methods: The chemicals regulated by each law were classified by the specific categories provided in the respective law; seven categories for OSHA (chemicals with OELs, chemicals prohibited from manufacturing, etc., chemicals requiring approval, chemicals kept below permissible limits, chemicals requiring workplace monitoring, chemicals requiring special management, and chemicals requiring special heath diagnosis) and five categories from the CSCA(poisonous substances, permitted substances, restricted substances, prohibited substances, and substances requiring preparation for accidents). Information on physicochemical properties, health indices including CMR characteristics, $LD_{50}$ and $LD_{50}$ were searched from the homepages of the Korean Occupational and Safety Agency and the National Institute of Environmental Research, etc. Statistical analysis was conducted for comparison between TWA and health index for each category. Results: The number of chemicals based on CAS numbers was different from the numbers of series of chemicals listed in each law because of repeat listings due to different names (e.g., glycol monoethylether vs. 2-ethoxy ethanol) and grouping of different chemicals under the same serial number(i.e., five different benzidine-related chemicals were categorized under one serial number(06-4-13) as prohibited substances under the CSCA). A total of 722 chemicals and 995 chemicals were listed at the OSHA and its sub-regulations and CSCA and its sub-regulations, respectively. Among these, 36.8% based on OSHA chemicals and 26.7% based on CSCA chemicals were regulated simultaneously through both laws. The correlation coefficients between TWA and $LC_{50}$ and between TWA and $LD_{50}$, were 0.641 and 0.506, respectively. The geometric mean values of TWA calculated by each category in both laws have no tendency according to category. The patterns of cumulative graph for TWA, $LD_{50}$, $LC_{50}$ were similar to the chemicals regulated by OHSA and CCSA, but their median values were lower for CCSA regulated chemicals than OSHA regulated chemicals. The GM of carcinogenic chemicals under the OSHA was significantly lower than non-CMR chemicals($2.21mg/m^3$ vs $5.69mg/m^3$, p=0.006), while there was no significant difference in CSCA chemicals($0.85mg/m^3$ vs $1.04mg/m^3$, p=0.448). $LC_{50}$ showed no significant difference between carcinogens, mutagens, reproductive toxic chemicals and non-CMR chemicals in both laws' regulated chemicals, while there was a difference between carcinogens and non-CMR chemicals in $LD_{50}$ of the CSCA. Conclusions: This study found that there was no specific tendency or significant difference in health indicessuch TWA, $LD_{50}$ and $LC_{50}$ in subcategories of chemicals as classified by the Ministry of Labor and Employment and the Ministry of Environment. Considering the background and the purpose of each law, collaboration for harmonization in chemical categorizing and regulation is necessary.

Effects of Transition Metal Gallium on the Serum Biochemistry and Erythrocyte Morphology of Goldfish (Carassius auratus) (전이금속 갈륨이 금붕어(Carassius auratus)의 적혈구 및 혈청의 생화학반응에 미치는 영향)

  • Kim, Dong-Hwi;Dharaneedharan, Subramanian;Jang, Young-Hwan;Park, So-Hyun;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1308-1312
    • /
    • 2016
  • Heavy metals such as gallium (Ga) cause serious physiological damage to exposed organisms, mostly of aquatic species. Ga one of the inter-metallic, transition elements increasingly being used in making high-speed semiconductors, such as Ga arsenide. The purposes of this study were to investigate the effects of Ga on acute toxicity, serum biochemical changes, and erythrocyte morphological changes in the blood stream of goldfish (Carassius auratus). Median lethal concentrations were determined in acute tests. The 96 hr $LC_{50}$ value was 9.15 mg/ml. Goldfish were exposed to different Ga concentrations (2.0, 4.0, and 8.0 mg/ml) for 30 days to assess its toxic effects. The results indicate that the measured serum biochemistry parameters (including glucose, blood urea nitrogen, creatinine, cholesterol, and triglyceride) of the Ga-exposed fish groups differed significantly from the untreated fish group. In addition, a change in the erythrocytes' morphology at a high concentration (8.0 mg/ml) of Ga exposure shows respiratory problems. Our results suggest that 2.0 mg/ml is proposed as a biologically safe concentration that can be used for establishing tentative water quality criteria concerning the same-size goldfish.

Characterization of Mamestra brassicae Nucleopolyhedrovirus (MabrNPV)-K1 Isolated in Korea

  • Lee, Jae-Kyung;Shin, Tae-Young;Bae, Sung-Min;Choi, Jae-Bang;Oh, Jeong-Mi;Koo, Hyun-Na;Kim, Ju-Il;Kwon, Min;Woo, Soo-Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.17 no.1
    • /
    • pp.125-129
    • /
    • 2008
  • The purpose of this study was to investigate the characteristics of Mamestra brassicae nucleopolyhedrovirus (MabrNPV)-K1 isolated in Korea. Polyhedra of MabrNPV-K1 showed irregular appearance in shape with the average diameter $1.8{\mu}m$. MabrNPV-K1 contained a number of nucleocapsids within a viral envelope embedded in polyhedron. The polyhedrin of MabrNPV-K1 was composed of single polypeptide with a M.W. of approximate 31 kDa which is identical to the commercialized MabrNPV, Mamestrin, as a biological control agent. The nucleotide and amino acid sequences within the coding region of MabrNPV-K1 polyhedrin shared 99.0% similarity with the polyhedrin gene from previous reported MabrNPVs. The median lethal concentrations ($LC_{50}$) of MabrNPV-K1 and Mamestrin to M. brassicae larvae were $3.9{\times}10^3$ PIBs/larva and $6.0{\times}10^4$ PIBs/larva, respectively. Mortality of the MabrNPV-K1 against to the third instars larvae was 15 times higher than that of the Mamestrin. The median lethal times ($LT_{50})$ of MabrNPV-K1 by the concentration of polyhedra were lower ($4.4{\sim}6.1$ days) than those of Mamestrin ($4.1{\sim}8.6$ days). These results suggest that a local strain MabrNPV-K1 has high pathogenicity to M. brassicae and may be useful for the development of biological control agent to control this.

Acute Toxicity of Ammonia on Juvenile banded Catfish(Pseudobagurus fulvidraco) (동자개 치어의 암모니아 급성 독성)

  • SOHN, Sang-Gyu;LEE, Joo-Yong;LEE, Young-Sik;KIM, Kwang-Seog;KIM, Bong-Rae;LEE, Jeong-Ho;CHOI, Hye-Sung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1229-1235
    • /
    • 2015
  • Juvenile banded catfish(Pseudobagurus fulvidraco, mean length $10.7{\pm}0.42cm$ and mean weight $15.0{\pm}0.23g$) were exposed to varies TAN(total ammonia) concentrations at pH levels of $6.12{\pm}0.51$, $7.00{\pm}0.26$ and $8.04{\pm}0.07$ for 96hrs to check the level of acute toxicity on biofloc technology aquaculture system(BFT). The result showed that cumulative mortalities for juvenile banded catfish at TAN levels 48.95, 55.96, 66.47, and 78.88 mg/L at pH $6.12{\pm}0.51$ were 0, 30, 30, and 50%, respectively. At pH $7.00{\pm}0.26$, its mortalities to TAN 5.20, 11.68, 15.31, and 18.31 mg/L were 0, 10, 20, and 70%, respectively and at pH $8.04{\pm}0.07$, the mortalities to TAN 0.96, 1.49, 2.13, and 3.62 mg/L were 10, 20, 40, and 100%, respectively. Its $96h-LC_{50}$ (median lethal concentration, $LC_{50}$) at pH $6.12{\pm}0.51$, $7.00{\pm}0.26$, and $8.04{\pm}0.07$ were 78.12, 15.87, and 2.21 mg/L for TAN, and 0.05, 0.10, and 0.14 mg/L for $NH_3$, respectively, and the acute toxicity for ammonia to juvenile banded catfish increased exponentially with increase of pH.

Lethal Toxicity and Hematological Changes Exposed to Nitrate in Flatfish, Paralichthys olivaceus in Biofloc and Seawater (바이오플락 및 일반 해수에서 질산염의 넙치 (Paralichthys olivaceus)에 미치는 급성 독성 및 혈액학적 성상의 변화)

  • Bae, Sun-Hye;Kim, Ki Wook;Kim, Su Kyoung;Kim, Su-Kyoung;Kim, Jong-Hyun;Kim, Jun-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.373-379
    • /
    • 2017
  • Juvenile Paralichthys olivaceus (mean length $19.8{\pm}2.6cm$, mean weight $97.8{\pm}15.8g$) were exposed for 96 hours to different nitrate concentrations of 0, 62.5, 125, 250, 500, 1,000, and $1,500mg\;L^{-1}$ in biofloc and 0, 62.5, 125, 250, 500, and $1,000mg\;L^{-1}$ in seawater. Median lethal concentration values ($LC_{50}$, the concentration at which 50% of mortality occurred after 96 hours of exposure) of nitrate to P. olivaceus in biofloc and seawater were 1,226 and $597mg\;NO_3L^{-1}$ (P<0.05), respectively, revealing a higher toxicity of nitrate to P. olivaceus in seawater than in biofloc. In hematological parameters, hematocrit level in P. olivaceus exposed to nitrate was significantly increased only at a concentration of $1,000mg\;L^{-1}$ in biofloc and at concentrations higher than $250mg\;L^{-1}$ in seawater, but no significant changes in hemoglobin were found in biofloc and seawater. In plasma parameters, aspartate aminotransferase (AST) and alanine aminotransminase (ALT) were significantly increased by nitrate exposure in biofloc and seawater, but no significant changes in alkaline phosphatase (ALP) were found in biofloc and seawater. Results of this study indicate that nitrate exposure to P. olivaceus have a lethal toxic effect and alter hematological and plasma constituents of flatfish P. olivaceus. Given relatively lower toxicity of nitrate in biofloc than in seawater, the use of biofloc in aquaculture may reduce potential toxic effect caused by nitrate in feces and feed residue.

Prediction and analysis of acute fish toxicity of pesticides to the rainbow trout using 2D-QSAR (2D-QSAR방법을 이용한 농약류의 무지개 송어 급성 어독성 분석 및 예측)

  • Song, In-Sik;Cha, Ji-Young;Lee, Sung-Kwang
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.544-555
    • /
    • 2011
  • The acute toxicity in the rainbow trout (Oncorhynchus mykiss) was analyzed and predicted using quantitative structure-activity relationships (QSAR). The aquatic toxicity, 96h $LC_{50}$ (median lethal concentration) of 275 organic pesticides, was obtained from EU-funded project DEMETRA. Prediction models were derived from 558 2D molecular descriptors, calculated in PreADMET. The linear (multiple linear regression) and nonlinear (support vector machine and artificial neural network) learning methods were optimized by taking into account the statistical parameters between the experimental and predicted p$LC_{50}$. After preprocessing, population based forward selection were used to select the best subsets of descriptors in the learning methods including 5-fold cross-validation procedure. The support vector machine model was used as the best model ($R^2_{CV}$=0.677, RMSECV=0.887, MSECV=0.674) and also correctly classified 87% for the training set according to EU regulation criteria. The MLR model could describe the structural characteristics of toxic chemicals and interaction with lipid membrane of fish. All the developed models were validated by 5 fold cross-validation and Y-scrambling test.