• Title/Summary/Keyword: Mechatronics experiment

Search Result 225, Processing Time 0.027 seconds

The Mechanical Characteristic Analysis and Improvement of Precision Position Control System with AC Servo Motor and Ball Screw (AC Servo Motor와 Ball screw를 이용한 정밀 위치제어시스템의 기계적 특성 분석 및 개선)

  • Ko, Su-Chang;Jin, Kyoung-Bog
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.31-36
    • /
    • 2007
  • Effect of coulomb friction and backlash on the single loop position control has been studied for the precision position control. We have showed the limit cycle on the single loop system which used a ball screw that had the backlash. Also, we have made an inner loop with a classical velocity and torque controller which was forcing the current of d axis to be zero by using a permanent-magnet synchronous motor and composed the outer loop with linear encoder for sensing a position of the loader. Also, we have used least squares fit(LSF) observer for reducing noise when we got velocity from position outputs. We have shown a good result by using the dual loop through simulation and experiment.

  • PDF

A Study on Warpage Reduction of FDM 3D Printer Output Using TRIZ Method (TRIZ 기법을 이용한 FDM방식 3D프린터 출력물의 휨 현상 개선에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong;Park, Jong Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.1-5
    • /
    • 2016
  • 3D printer is the equipment of the system for sequentially layer laminated in the materials. Now 3D printer used in various fields such as, semiconductor, electricity automobile, medical and various types of output method and material. In this paper, we studied about the improvement on warpage due to shrinkage of product from 3D printer of FDM(Fused Deposition Modeling) type, we proposed measures systematically to solve warpage problem using of 6SC(6 Step Creativity) method of practical TRIZ. After experimented with product prototypes experiment, we verified effect about solution.

트로코이달 헬리컬 기어의 비정상상태 유한요소해석

  • ;;Yong Bok Park;Dong Yol Yang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.37-46
    • /
    • 1994
  • In metal forming, there ar problems with recurrent geometric characteristics and without explicitly prescribed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. The present study deals with nonsteady-state three-dimensional finite element analysis for extrusion of a trocoidal helical gear through a curved die. The boundary-directed remeshing scheme based on the modular remeshing technique is developed to reduce the errors arising in fitting old and new mesh systems. The computed extrusion pressure in reaching the near steady-state loading stage is compared with the results of the experiment and the steady-state analysis. The three-dimensional deformed pattern involving warping at the extruded end due to torsional deformation mode is demonstrated.

  • PDF

Analysis of Relationship between Body and Gimbal Motion Through Experiment of a Single-wheel Robot Based on an Inverse Gyroscopic Effect (외바퀴 로봇의 역자이로 효과에 의한 바디 모션과 김벌 모션의 실험을 통한 관계 분석)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1064-1069
    • /
    • 2015
  • Control Moment Gyro (CMG) has been used as an indirect actuator of a single-wheel robot system GYROBO, developed at Chungnam National University. The flip motion of the gimbal system produces the gyroscopic motion onto the body system while the body motion also produces the gyroscopic motion onto the gimbal system inversely. In this paper, the intuitive equation of the inverse gyroscopic effect is derived as the direct relation between the rate of the body system and the rate of the gimbal system. Experiments on the inverse gyroscopic effect under the chaotically generated disturbance are conducted. Experimental data are approximated by a linear equation using the least square method.

A Study on Prediction Model of Scaffold Pore Size Using Machine Learning (머신 러닝을 이용한 인공지지체 기공 크기 예측 모델에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.46-50
    • /
    • 2019
  • In this paper, We used the regression model of machine learning for improve the print quantity problem when which print scaffold with 400 ㎛ pore using FDM 3d printer. We have difficult to experiment with changing all factors in the field. So we reduced print quantity by selected two factors that most impact the pore size. We printed and measured scaffold 5 times under same conditions. We created regression model using scaffold pore size and print conditions. We predicted pore size of untested print condition using the regression model. After print scaffold with 400 ㎛ pore, we printed scaffold 5 times under same conditions. We compare the predicted scaffold pore size and the measured scaffold pore size. We confirmed that error is less than 1 % and we verified the results quantitatively.

A Study on Problem Solving of PLGA Scaffold Warpage Using 5 Step Practical TRIZ (5 Step 실용트리즈 기법을 이용한 PLGA인공지지체의 변형 문제 해결에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong;Park, Jong Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.25-29
    • /
    • 2017
  • In this paper, we have studied the deformation problem of the scaffold caused by the FDM type 3D printer. The Practical TRIZ technique was used to solve the deformation problem of the scaffold generated from the adhesion surface between the scaffold and the bed. The Practical TRIZ methodology was used to derive the solution and the experiment was conducted on the derived solution. As a result of evaluating the experimental results obtained for the solution, it was found that the deformation of the scaffold was much improved to the satisfactory level.

  • PDF

A Study on Square Pore Shape Discrimination Model of Scaffold Using Machine Learning Based Multiple Linear Regression (다중 선형 회귀 기반 기계 학습을 이용한 인공지지체의 사각 기공 형태 진단 모델에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.59-64
    • /
    • 2020
  • In this paper, we found the solution using data based machine learning regression method to check the pore shape, to solve the problem of the experiment quantity occurring when producing scaffold with the 3d printer. Through experiments, we learned secured each print condition and pore shape. We have produced the scaffold from scaffold pore shape defect prediction model using multiple linear regression method. We predicted scaffold pore shapes of unsecured print condition using the manufactured scaffold pore shape defect prediction model. We randomly selected 20 print conditions from various predicted print conditions. We print scaffold five times under same print condition. We measured the pore shape of scaffold. We compared printed average pore shape with predicted pore shape. We have confirmed the prediction model precision is 99 %.

Design of CNN with MLP Layer (MLP 층을 갖는 CNN의 설계)

  • Park, Jin-Hyun;Hwang, Kwang-Bok;Choi, Young-Kiu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.776-782
    • /
    • 2018
  • After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.

A Study on Analysis of Dimensional Error of Projector for Formulations of Measurement Automation (측정 자동화 구축을 위한 투영기의 치수오차 분석에 관한 연구)

  • Choi, Jisun;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.114-118
    • /
    • 2021
  • In this research, the dimensional error of the measured specimen according to the measurement method was analyzed for the length, angle, radius of curvature and diameter using a projector which is used in industry. One-way analysis was performed on each data tested 30 times using a statistical technique. Through the experiment, it was found that an error occurred in each data when measuring the length and radius of curvature according to the measurement method, and the null hypothesis that no error occurred when measuring the angle and length was established. Based on this experimental data, the automatic measurement when measuring the projector causes less measurement error, so automatic measurement is recommended when measuring a small product. Also, an optimal measuring method is suggested for securing reliability on formulations of measurement automation.

Study of Optimal Process Conditions of 3D Porous Polymer Printing for Personal Safety Products (개인안전 제품을 위한 3 차원 다공성 폴리머 프린팅의 최적화 공정조건에 대한 연구)

  • Yoo, Chan-Ju;Kim, Hyesu;Park, Jun-Han;Yun, Dan-Hee;Shin, Jong-Kuk;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.333-339
    • /
    • 2016
  • In this paper, a fundamental experiment regarding the formation of porous 3D structures for personal safety products using 3D PPP (Porous Polymer Printing) was introduced for the first time. The filament was manufactured by mixing PP (Polypropylene) and CBA (Chemical Blowing Agent) with polymer extruder, and the diameter of the filament was approximately 1.75mm. The proposed 3D PPP method, combined with the conventional FDM (Fused Deposition Modeling) procedure, was influenced by process parameters, such as the nozzle temperature, printing speed and CBA density. In order to verify the best processing conditions, the depositing parameters were experimentally investigated for the porous polymer structure. These results provide parameters under which to form a multiple of 3D porous polymer structures, as well as various other 3D structures, and help to improve the mechanical shock absorption for personal safety products.