• Title/Summary/Keyword: Mechanical strenth

Search Result 8, Processing Time 0.028 seconds

An Computer Simulation for Lew Back Injury Lifting Task (컴퓨터 시뮬레이션을 이용한 Lifting Task의 허리부상에 관한 연구)

  • 김인준;황규성
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.26
    • /
    • pp.125-136
    • /
    • 1992
  • Primary prevention of low back injury in industry has focused on assessing the person's ability to perform physical labor. If the job to be performed is known to require lifting and moving of materials which could stress the low back, then special consideration is given to the health and functional capability of the person, s back. The major pursuit in lifting task of research is to provide objective criteria based upon all of the relevant mechanical parameters which describe both man art task so as to minimize the probabilities of injury within the economic constraints of each organization. The purpose of this study is to predict the back compression of persons asked to lift objects while assuming different position by computer simulation. The primary result of this study is that the incidence of low back injury is correlated with higher lifting strenth requirements as determined by assessment of both the location and magnitude of the load lifted. It is, therefore, recommended that load lifting be considered potentially hazardous, and the action limit and the maximum permissiable limit be used to guide corrective action.

  • PDF

The Microstructures and Mechanical Properties on the GTA Welding conditions of Inconel 617 (Inconel 617 GTA 용접조건에 따른 미세조직 특성 및 기계적성질)

  • Choe, Seong-Bu;Lee, Bong-Geun;Gang, Jeong-Yun
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.171-173
    • /
    • 2005
  • Inconel 617 is a solid solution, nickel-chromium-cobalt-molybdenum alloy with an exceptional combination of high temperature strength and oxidation resistance. The combination of high strenth and oxidation resistance at temperatures over $1800^{\circ}F$ makes Inconel 617 an attractive material for such components as ducting, transition liners in both aircraft and gas turbine. In this study, the weldability and weldment characteristics of Inconel 617 are considered in GTAW associated with the two welding current and with back shielding gas using or not. After GTAW with 120A and 150A current, microstructures and hardness test, bending test, tensile test on room and elevated temperature for the determination of optical welding condition.

  • PDF

A Development of the Control System of the Computer Numerical Controlled Milling Machine for the Automobile Inside Keys (컴퓨터 수치제어 자동차용 인사이드 키(Inside Key) 가공기 제어장치 개발)

  • Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.672-674
    • /
    • 1998
  • Inside keys for the automobiles are the keys whose key teeth are engraved on the inside of the keys. These types of the keys are very effective in prohibiting making the copies of the keys for the criminal purposes and have excellent mechanical strenth comparing with the ordinary types of the keys. In this paper, a development of the control system for the milling machine which is used for cutting the teeth of the inside keys. This machine is controlled by a computer and the cutting is done automatically according to the key codes which are contained in the key code file. This work is presented to show an example of the industry-university cooperation.

  • PDF

Lateral Crush Strength of Nuclear Fuel Spacer Grid Considering Weld Properties (용접물성치를 고려한 핵연료 지지격자체 횡방향 충격강도)

  • Song, Kee Nam;Lee, Sang Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1663-1668
    • /
    • 2012
  • A spacer grid, which is one of the structural components in a PWR fuel, is an interconnected array of slotted grid straps that are welded at the intersections to form an egg-crate structure. The spacer grid is required to have sufficient lateral crush strength to enable nuclear reactor shut-down during abnormal operating environments. Previous studies on the lateral crush strength analysis of the spacer grid were performed using only the base material properties. In this study, to investigate the effect of the lateral crush strength of the spacer grid when using the mechanical properties in the weld zone instead of the base material properties, lateral crush strength analysis by considering the mechanical properties in the weld zone as obtained from the instrumented indentation technique was performed, and the results were compared with those of previous studies.

A Study on the Development for the Future Compressor Cylinder Block Using of Cold & Hot Forging Method (냉.온간포징법을 이용한 차세대 콤프레샤 실린더 블록 개발에 관한 연구)

  • Kim Soon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1301-1306
    • /
    • 2006
  • Aluminum alloys are gaining increased acceptance in the automotive and electronic industeries and cold & hot forging is the most efficient method of manufacturing such mass produced parts. This study has been investigated the microstructures and mechanical properties of A6061(Al-1.2Mg-0.8Si) alloy fabricated by cold & hot forging process for development of the future compressor block. The microstructure of cold & hot forginged specimen were composed of eutectic structure aluminum solid solution and $Mg_2Si$ precipitates. The tensile strength of as-solid solution treatment A6061 alloy revealed 291.7MPa. It was fabricated that a trial future compressor cylinder block using cold & hot forging.

Design of Zr-7Si-xSn Alloys for Biomedical Implant Materials (생체의료용 임플란트 소재를 위한 Zr-7Si-xSn 합금설계)

  • Kim, Minsuk;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.8-19
    • /
    • 2022
  • The metallic implant materials are widely used in biomedical industries due to their specific mechanical strenth, corrosion registance, and superior biocompatability. These metallic materials, however, suffer from the stress-shielding effect and the generation of artifacts in the magnetic resonance imaging exam. In the present study, we develope a Zr-based alloys for the biomedical implant materials with low elastic modulus and low magnetic susceptibility. The Zr-7Si-xSn alloys were fabricated by an arc melting process. The elastic modulus was 24~31 GPa of the zirconium-based alloy. The average magnetic susceptibility value of the Zr-7Si-xSn alloy was 1.25 × 10-8cm3g-1. The average Icorr value of the Zr-7Si-xSn alloy was 0.2 ㎂/cm2. The Sn added zirconium alloy, Zr-7Si-xSn, is very interested and attractive as a biomaterial that reduces the stress-shielding effect caused by the difference of elastic modulus between human bone and metallic implant.

A Study on the Mechanical Properties and Specific Resistivity of Reaction-Bonded Silicon Carbide According to α-SiC of Various Mixed Particle Size (반응소결 탄화규소의 다양한 α-SiC 조성에 따른 기계적 특성과 전기저항 특성에 관한 연구)

  • Kim, Young-Ju;Park, Young-Shik;Jung, Youn-Woong;Song, Jun-Baek;Park, So-Young;Im, Hang-Joon
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.172-177
    • /
    • 2012
  • For the manufacture of low resistance Si-SiC composite, the properties of reaction sintering in the green body of various mixed ${\alpha}$-SiC powder size with the various carbon contents from 0wt% to 20wt% were investigated. The samples preparation was green body by CIP method under this condition, molten silicon infiltration process was conducted to reaction bonded silicon carbide. the results of sintered density, 3-point bending strength and resistance of analysis showed that varied carbon and silicon melt reacted to convert to fine ${\beta}$-SiC particle and the structure was changed to dense material. The amount of fine ${\beta}$-SiC particle was gradually increased as carbon content increase. According to mixed composite, it's mechanical and specific resistivity properties was strongly influenced by carbon content within 10wt% more then carbon content 10wt% was strongly influenced by phase transition.

Preparation and properties of porous (Ca,Mg)0.15Zr0.7O1.7 ceramics (다공성 (Ca,Mg)0.15Zr0.7O1.7 세라믹스의 제조 및 특성)

  • Kim, Bok-Hee;Kim, Sang-Hee;Choi, Eun-Sil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.70-74
    • /
    • 2011
  • [ $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ]ceramics was investigated for the application to SOFC ceramic supporter with high porosity and mechanical strength. $ZrO_2$ powder was prepared by combustion method with glycine using the solution of $ZrO(NO_3)_2{\cdot}2H_2O$ dissolved into deionized water and calcination at $800^{\circ}C$ Porous $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics was prepared by sintering the mixture of prepared $ZrO_2$ powder, dolomite and carbon black at $1200{\sim}1400^{\circ}C$ for 1 h. The open porosity ofthe $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics sintered at $1300^{\circ}C$ was over 30 % and increased linearly with the amount of carbon black. The crystal structure of $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics consisted of single cubic phase. The open pore of this ceramics was connected continuously and distributed well on the whole. This ceramics sintered at $1300^{\circ}C$ showed the porosity from 32 to 55 % and mechanical strength from 90 MPa to 30 MPa with increasing the content of added carbon black.