• Title/Summary/Keyword: Mechanical stimulation

Search Result 194, Processing Time 0.037 seconds

Long-term Follow-up of Cutaneous Hypersensitivity in Rats with a Spinal Cord Contusion

  • Jung, Ji-In;Kim, June-Sun;Hong, Seung-Kil;Yoon, Young-Wook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.299-306
    • /
    • 2008
  • Sometimes, spinal cord injury (SCI) results in various chronic neuropathic pain syndromes that occur diffusely below the level of the injury. It has been reported that behavioral signs of neuropathic pain are expressed in the animal models of contusive SCI. However, the observation period is relatively short considering the natural course of pain in human SCI patients. Therefore, this study was undertaken to examine the time course of mechanical and cold allodynia in the hindpaw after a spinal cord contusion in rats for a long period of time (30 weeks). The hindpaw withdrawal threshold to mechanical stimulation was applied to the plantar surface of the hindpaw, and the withdrawal frequency to the application of acetone was measured before and after a spinal contusion. The spinal cord contusion was produced by dropping a 10 g weight from a 6.25 and 12.5 mm height using a NYU impactor. After the injury, rats showed a decreased withdrawal threshold to von Frey stimulation, indicating the development of mechanical allodynia which persisted for 30 weeks. The withdrawal threshold between the two experimental groups was similar. The response frequencies to acetone increased after the SCI, but they were developed slowly. Cold allodynia persisted for 30 weeks in 12.5 mm group. The sham animals did not show any significant behavioral changes. These results provide behavioral evidence to indicate that the below-level pain was well developed and maintained in the contusion model for a long time, suggesting a model suitable for pain research, especially in the late stage of SCI or for long term effects of analgesic intervention.

Development of a Pacemaker with a Ventricular Assist Device for End-Stage Heart Failure Patients (말기 심질환 환자를 위한 심실보조장치용 심박조율기의 개발)

  • Kim, Yoo-Seok;Park, Sung-Min;Choi, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1205-1211
    • /
    • 2011
  • In this paper, we developed a pacemaker that can increase the efficacy of a left ventricular assist device (LVAD) and increase the survival rate for patients suffering end-stage heart failure. Because LVAD patients can experience arrhythmia, the pacemaker incorporated into the LVAD has the important role of sustaining sufficient blood circulation during arrhythmia. The electrode of the pacemaker is located at the apex of the left ventricle, where the VAD's inlet cannula is connected. This is efficient placement, in that the electrode can transmit electrical stimulation directly to the Purkinje fibers of the myocardium. The pacemaker can change the stimulation rate from 0 bpm to 191.4 bpm when a button is pressed on the external control module, and the pacemaker normally stimulates the heart at 60 bpm with 0.25 J of energy. We performed animal experiments to evaluate the performance and reliability of the combination of the LVAD and pacemaker. At pacemaker stimulation rates of 86.4 bpm, 100.2 bpm, 126.6 bpm, we recorded the ECGs, aortic pressures, and flow rates to analyze the heart loads.

바이오센서

  • 홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.109-111
    • /
    • 1989
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients.

  • PDF

A Conceptual Design of an Integrated Tactile Display Device

  • Son, Seung-Woo;Kyung, Ki-Uk;Yang, Gi-Hun;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2753-2758
    • /
    • 2003
  • Tactile sensation is essential for many manipulation and exploration tasks not only in a real environment but also in a virtual environment. In this paper, we discuss a conceptual design of an integrated tactile display system. The system comprises two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device is implemented using eight piezoelectric bimorphs and a linear actuator, and is attached to a 2 DOF translational force feedback device to simultaneously simulate texture and stiffness of the object.

  • PDF

Electrical Stimulation Causes Endothelium-Dependent Relaxation in Isolated Aortic Vessels of the Rabbit (토끼 흉부 대동맥 절편의 전기자극에 대한 수축 및 이완반응)

  • Lee, Seok-Gi;Choe, Hyeong-Ho;Lee, Jong-Un
    • Journal of Chest Surgery
    • /
    • v.28 no.8
    • /
    • pp.742-746
    • /
    • 1995
  • The present study was aimed at investigating possible transmitter mechanisms in the endothelial cell layer in regulating the tone of the vascular smooth muscle. The thoracic aorta was isolated from the anesthetized male white rabbits and its helical strips were prepared. Electrical field stimulation was delivered to platinum wire electrodes positioned parallel to the vessel segment preconstricted with phenylephrine [3.5x10-6 mol/L at a distance of 1.5-2.0 mm. The electrical stimulation [70 V, 5 msec, 0.5-200 Hz caused either relaxation only [34% or a biphasic response [prolonged relaxation following a weak and transient contraction, 66% . The relaxation response was frequency- dependent, and at 200 Hz a complete relaxation was noted. Mechanical rubbing of the endothelial layer abolished or greatly attenuated the relaxation. The relaxation was also markedly attenuated in the presence of NG-nitro- L-arginine methyl ester [10-3mol/L or procaine hydrochloride [3.5x10-4mol/L . Tetrodotoxin,guanethidine, atropine or indomethacin failed to block or enhance the relaxation response to electrical field stimulation. It is concluded that the vascular endothelium in the aorta contains diffusible substances that regulates the function of the smooth muscle layer, in which relaxation is more prominent than contraction. Their release by the electrical stimualtion in vitro may not involve classic neuronal transmitter release mechanisms or metabolism of arachidonic acids by cyclooxygenase. The release of the relaxing agents may require an increase in cytosolic calcium level. The chemical nature of the relaxant may be, to a large extent, nitric oxide.

  • PDF

Sensory Inputs to Upper Cervical Spinal Neurons Projecting to Midbrain in Cats

  • Kim, Jong-Ho;Jeong, Han-Seong;Park, Jong-Seong;Kim, Jong-Keun;Park, Sah-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.9-19
    • /
    • 1998
  • The present study was primarily carried out to characterize the properties of the spinomesencephalic tract (SMT) neurons that project from the upper cervical spinal segments to the midbrain. It was also investigated whether these neurons received convergent afferent inputs from other sources in addition to cervical inputs. Extracellular single unit recordings were made from neurons antidromically activated by stimulation of midbrain. Recording sites were located in lamina $I{\sim}VIII\;of\;C1{\sim}C3$ segments of spinal cord. Receptive field (RF) and response properties to mechanical stimulation were studied in 71 SMT neurons. Response profiles were classified into six groups: complex (Comp, n=9), wide dynamic range (WDR, n=16), low threshold (LT, n=5), high threshold (HT, n=6), deep/tap (Deep, n=10), and non- responsive (NR, n=25). Distributions of stimulation and recording sites were not significantly different between SMT groups classified upon their locations and/or response profiles. Mean conduction velocity of SMT neurons was $16.7{\pm}1.28\;m/sec$. Conduction velocities of SMTs recorded in superficial dorsal horn (SDH, n=15) were significantly slower than those of SMTs recorded in deep dorsal horn (DDH, n=18), lateral reticulated area (LRA, n=21), and intermediate zone and ventral horn (IZ/VH, n=15). Somatic RFs for SMTs in LRA and IZ/VH were significantly larger than those in SDH and DDH. Five SMT units (4 Comps and 1 HT) had inhibitory somatic RFs. About half (25/46) of SMT units have their RFs over trigeminal dermatome. Excitabilities of 5/12 cells and 9/13 cells were modulated by stimulation of ipsilateral phrenic nerve and vagus nerve, respectively. These results suggest that upper cervical SMT neurons are heterogenous in their function by showing a wide range of variety in location within the spinal gray matter, in response profile, and in convergent afferent input.

  • PDF

A Neuroanatomical and Neurophsiolgical basic Study on the Mechanism of Acupuncture in central nervous system (침자기전(鍼刺機轉)의 중추신경계(中樞神經系)에서의 신경해부(神經解剖).생리학적(生理學的) 기초연구(基礎硏究))

  • Kim, Jeong-Heon
    • Korean Journal of Oriental Medicine
    • /
    • v.2 no.1
    • /
    • pp.514-550
    • /
    • 1996
  • There are many theory in acupuncture mechanism, so we must know the detail contents. and then we can use the acupuncture as we know. the follow article will be helpful in this part. 1. Spinal cord are role in intermediate part in somatosensorypathway also in acupuncture stumulating tract 2. Acute pain pathway started in laminae I, V of gray colmn, next are the spinothalamic tract(trigeminal spinothalamic tract in above neck part) and then go to the specific thalamic nucleus. but chronic pain in laminae II, III, VI, VII, next are spinoreticular tract(trigeminal spinoreticular tract in the neck part) and finally to the nonspecific thalamic nucleus. 3. Thalamus is very important area in somatosensory stimuation including acupuncture stumulating sensory also as a pain control center. but except this, there are Hypothalamus, Limbic system Cerebral cortex and Cerebellum as intermediator. as we Know hypothalamus is related to the emotional analgesic system with a limbic system. 4. A ${\delta$ fiber has relationship in Acute, sharp and initial pain, contrary this C fiber is related with Chronic, dull and last pain. 5. In Acupuncture mechanism of pain analgesia, there are two theory, one is gate control theory as large fiber another is stimuation produced analgesia as small diameter fier. 6. In DNIC, the stimulation sources are mechanical, thermal, heating, pain and acupuncture stimulation etc. we call these as a Heterotopic Noxious Stimulation. 7. In DNIC, SRD(Subnucleus reticularis dorsalis)is core nucleus in pain imtermediated analgesic mechanism. 8. Takeshige insisted nonacupuncture point dependent analgesic mechanism and acupuncture point dependent analgesic mechanism. and protested that Stimulation acupuncture piing evoke blocking nomacupuncture point analgesic pathway.

  • PDF

The Effect of Frequency of Transcutaneous Electrical Nerve Stimulation (TENS) on Maximum Multi-finger Force Production

  • Karol, Sohit;Koh, Kyung;Kwon, Hyun Joon;Park, Yang Sun;Kwon, Young Ha;Shim, Jae Kun
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.93-99
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effect of transcutaneous electrical nerve stimulation (TENS) treatment on maximum voluntary force (MVF) production. Methods: Ten healthy, young subjects (5 males and 5 females) participated in the study. MVF was recorded after a fifteen minute session of TENS stimulation under two conditions: low frequency (4 Hz) at maximum tolerable level and high frequency (110 Hz) at maximum tolerable level. TENS was provided simultaneously via self-adhesive electrodes placed on the finger pads of the index, middle, ring and little fingers. MVF was also recorded in a baseline condition with no TENS treatment. Data were collected in three different sessions on three consecutive days at the sametime of the day. Results: Results from the study show that on an average, MVF increasesby 25% for the index, middle and little fingers for TENS treatment with 4 Hz frequency as compared to the baseline condition. However, the 110 Hz condition did not result in a significantly different MVF than the baseline condition during individual finger pressing tasks. In addition, while producing MVF with all the four finger stogether, MVF was 30% higher for the 4 Hz conditionin comparison to the baseline condition, and 15% higher for the 110 Hz condition in comparison to the baseline condition respectively. Conclusion: The results suggest that stimulation ofafferent fibers onthe glabrous skinwith TENS could have a net facilitatory effect on the maximum motoroutput.

Verification of Numerical Technique for Hydraulic Fracturing Stimulation - by Comparison with Analytical Solutions - (수압파쇄 설계를 위한 수치해석기법의 증명 -해석식과의 비교를 중심으로 -)

  • Sim, Young-Jong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.65-71
    • /
    • 2009
  • Hydraulic fracturing technology has been widely applied in the industry for the recovery of the natural resources such as gas, oil and geothermal heat from hot dry rock. During hydraulic fracturing stimulation, multiple cracks are created resulting in mechanical interaction between cracks. Such an interaction influences obtaining hydraulic fracturing key parameters (crack opening, length, and borehole net pressure). The boundary collocation method (BCM) has been proved to be very effective in considering mechanical interaction. However, for better confidence, it needs to be verified by comparison with analytical solutions such as stress intensity factors. In this paper, three cases, single fracture in remote uniaxial tension, single fracture in remote shear stress field and two arbitrary segments in an infinite plane loaded at infinity are considered. As a result, the BCM is proved to be valid technique to consider mechanical interaction between cracks and can be used to estimate the hydraulic fracturing parameters such as opening of the fracture, and so on.

  • PDF

Responses of Dorsal Horn Neurons to Peripheral Chemical Stimulation in the Spinal Cord of Anesthetized Cats

  • Jung, Sung-Jun;Park, Joo-Min;Lee, Joon-Ho;Lee, Ji-Hye;Eun, Su-Yong;Kim, Sang-Jeong;Lim, Won-Il;Cho, Sun-Hee;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.15-24
    • /
    • 2000
  • Although nociceptive informations are thought to be processed via different neural mechanisms depending on the types of stimuli, sufficient data have not been accumulated yet. We performed a series of experiments to elucidate the possible neural mechanisms as to chemical stimuli such as formalin, capsaicin and ATP. Single unit activity of wide dynamic range (WDR) neurons and high threshold cells were recorded extracellularly from the lumbosacral enlargement of cat spinal cord before and after chemical stimulation to its receptive field (RF). Each chemical substance - formalin $(20{\mu}l,\;4%),$ capsaicin (33 mM) or Mg-ATP (5 mM)- was injected intradermally into the RFs and then the changes in the spontaneous activity, mechanical threshold and responses to the peripheral mechanical stimuli were observed. In many cases, intradermal injection of formalin (5/11) and capsaicin (8/11) resulted in increase of the spontaneous activity with a biphasic pattern, whereas ATP (8/8) only showed initial responses. Time courses of the biphasic pattern, especially the late response, differed between formalin and capsaicin experiments. One hour after injection of each chemical (formalin, capsaicin, or ATP), the responses of the dorsal horn neurons to mechanical stimuli increased at large and the RFs were expended, suggesting development of hypersensitization (formalin 6/10, capsaicin 8/11, and ATP 15/19, respectively). These results are suggested that formalin stimulates peripheral nociceptor, local inflammation and involvement of central sensitization, capsaicin induces central sensitization as well as affects the peripheral C-polymodal nociceptors and neurogenic inflammation, and ATP directly stimulates peripheral nociceptors.

  • PDF