The purpose of this study was to evaluate the relationship between the tactile sensation and mechanical properties of towel. Six kinds of towels with different surface structure and fiber composition were used for this study. To evaluate the tactility of towel, 36 adjectives were collected and then 11 adjectives were selected. The subjective evaluation was examined by one to one comparative method and by blind test for estimating the only the sense of touch of the towels. Kawabata's Evaluation system for fabrics was used to measure the mechanical properties which are tensile, bending, shear, compression, surface, weight, and thickness of six towels. The results are as follows; First, surface structure of the towels had an effect on estimation the sense of touch. Pile surface was evaluated thicker, compacter, more cushiony, and more elastic. Waffle surface was evaluated knottier and rougher, and microfiber suede surface was evaluated softer and denser. Second, the highest value of the mechanical properties measured were G, 2HG, B, and SMD of 100% cotton 100% pile, WC, T, and W of elban loop pile, WT, 2HB, and LC of 100% cotton cut pile, RT and MIU of microfiber suede, and RC of microfiber waffle. Third, the 11 adjectives were correlated with more than one mechanical property. 'Knotty' and 'rough' were correlated with MMD and SMD, 'soft' were correlated with B, 2HB, MMD, and SMD. 'Thick', 'heavy', 'compact', and 'elastic' were correlated with WC, T, and W, 'cushiony' was correlated with WC. 'Stiff' was correlated with B and 2HB, 'dry out' was correlated with RT, WC, MIU, and T. 'Dense' was correlated with RT and SMD.