• Title/Summary/Keyword: Mechanical property at high temperature

Search Result 260, Processing Time 0.029 seconds

High Temperature Wear Behavior of Inconel 690 Steam Generator tube (인코벨 690 증기발생기 세관의 고온 마모 거동)

  • 홍진기;김인섭;김형남;장기상
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.59-62
    • /
    • 2001
  • Flow induced vibration in steam generators has caused dynamic interactions between tubes and contacting materials resulting in fretting wear . Series of experiments have been performed to examine the wear properties of Inconel 690 steam generator tubes in various environmental conditions. For the present study, the test rig was designed to examine the fretting wear and rolling wear properties in high temperature(room temperature - 290。C) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of the steam generator tube materials. To investigate the wear mechanism of material, the worn was observed using scanning electron microscopy. The weight loss increase at higher test temperature was caused by the decrease of water viscosity and the mechanical property change of tube material. The mechanical property changes of steam generator tube material, such as decrease of hardness or yield stress in the high temperature tests. From the SEM observation of worn surfaces, the severe wear scars were observed in specimens tested at the higher temperature.

  • PDF

Investigation on Mechanical Property and Adhesion of Oxide Films Formed on Ni and Ni-Co Alloy in Room and High Temperature Environments

  • Oka, Yoshinori I.;Watanabe, Hisanobu
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.145-151
    • /
    • 2008
  • Material degradation such as high temperature oxidation of metallic material is a severe problem in energy generation systems or manufacturing industries. The metallic materials are oxidized to form oxide films in high temperature environments. The oxide films act as diffusion barriers of oxygen and metal ions and thereafter decrease oxidation rates of metals. The metal oxidation is, however, accelerated by mechanical fracture and spalling of the oxide films caused by thermal stresses by repetition of temperature change, vibration and by the impact of solid particles. It is therefore very important to investigate mechanical properties and adhesion of oxide films in high temperature environments, as well as the properties in a room temperature environment. The oxidation tests were conducted for Ni and Ni-Co alloy under high temperature corrosive environments. The hardness distributions against the indentation depth from the top surface were examined at room temperature. Dynamic indentation tests were performed on Ni oxide films formed on Ni surfaces at room and high temperature to observe fractures or cracks generated around impact craters. As a result, it was found that the mechanical property as hardness of the oxide films were different between Ni and Ni-Co alloy, and between room and high temperatures, and that the adhesion of Ni oxide films was relatively stronger than that of Co oxide films.

A Study on the Mechanical Properties of Structural Steels by Welding at High Temperature (용접한 건축구조용 강재의 고온 시 기계적 특성에 관한 연구)

  • Cho, Bum-Yean;Jee, NamYong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.161-164
    • /
    • 2009
  • This research is to show the mechanical properties of structural steels by welding at high temperature. Welding parts are divided with weld metal and HAZ(Heat Affected Zone). HAZ is formed by interval from welding heat source and heating and cooling rates. Then, the change of both microstructure and mechanical properties occurs. Discontinuity of mechanical and chemical property at HAZ is the cause of safety decrease of structure. At this point, in this research, tensile tests at high temperature with test pieces of base metal and weld metal of SS400 and SM490 are accomplished. From the results, the mechanical properties of both SS400 and SM490 are standardized without welding or non-welding.

  • PDF

High Temperature Tensile Properties of Heat-resistant Cast Ferritic Stainless Steels (고내열 페라이트계 스테인레스 주강의 고온인장특성 평가)

  • Jeong, Hyeon Kyeong;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.1
    • /
    • pp.10-16
    • /
    • 2021
  • Exhaust manifold is a very important component that is directly connected to air environment pollution and that requires strict mechanical properties such as high temperature fatigue and oxidation. Among stainless steels, the ferritic stainless steel with body-centered cubic structure shows excellent resistance of stress-corrosion cracking, ferromagnetic at room temperature, very excellent cold workability and may not be enhanced by heat treatment. The microstructural characteristics of four cast ferritic stainless steels which are high heat-resistant materials, were analyzed. By comparing and evaluating the mechanical properties at room temperature and high temperature in a range of 400℃~800℃, a database was established to control and predict the required properties and the mechanical properties of the final product. The precipitates of cast ferritic stainless steels were analyzed and the high-temperature deformation characteristics were evaluated by comparative analysis of hardness and tensile characteristics of four steels at room temperature and from 400℃ to 800℃.

Tensile characteristics of Alumina Thin Film at High Temperature (고온에서 알루미나 박막의 인장특성)

  • 선신규;강기주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1344-1347
    • /
    • 2004
  • Recently, Study on measuring property of a micro thin film(nm ~ hundreds of ) under Thermal Mechanical loading. In this work, We perform tensile test at high temperature(1200 ) to investigate mechanical properties of alumina TGO formed under Thermal Barrier Coating. We used Digital Image Correlation method for measuring displacement, and We presented a method of tensile test for thin film at high temperature.

  • PDF

Mechanical Property and Ductile-Brittle Transition Behavior of Ti-Nb-P Added Extra Low Carbon High Strength Steel Sheets (Ti-Nb-P 첨가 극저탄소 고강도 강판의 기계적 성질과 연성-취 천이거동)

  • Park J. J.;Lee O. Y.;Park Y. K.;Han S. H.;Chin K. G.
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.863-869
    • /
    • 2004
  • The purpose of this research is to investigate the mechanical property and ductile-brittle transition temperature of Ti-Nb-P added extra low carbon interstitial free steel having a tensile strength of 440 MPa. The mechanical property and transition temperature of hot rolled steel sheets were more influenced by the coiling temperature rather than by the small amount of alloying element. Further, at the same composition, the property of the specimen coiled at low temperature was superior to that obtained at higher coiling temperature. The fracture surface of 0.005C-0.2Si-1.43Mn steel coiled at $630^{\circ}C$ showed a ductile fracture mode at $-100^{\circ}C$, but coiling at $670^{\circ}C$ showed a transgranular brittle fracture mode at $-90^{\circ}C$. The galvannealed 0.006C-0.07Si-1.33Mn steel sheet annealed at $810^{\circ}C$ has tensile strength and elongation of 442.8 MPa and $36.6\%$, respectively. The transition temperature of galvannealed 0.006C-0.07Si-1.33Mn steel sheet was increased with a drawing ratio, and the transition temperature of the galvannealed 0.006C-0.07Si-1.33Mn steel was $-60^{\circ}C$ at a drawing ratio of 1.8

Experimental Study on Making Databases for Fire Resistant Steel at High Temperature (내화강재의 고온특성 데이터베이스 구축 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.1-7
    • /
    • 2013
  • Fire at building can occur enormous damages to life, properties, and environment and the risk of fire breakout is going up higher because of application of combustible materials than before. Therefore, the steel industries are trying to develop fire resistant steel in order to sustain the load bearing capacity of steel structures during fire situation. In this paper, to give the basis data-bases for evaluation of structural stability of steel structures applied fire resistant steel, FR 490, the tests of mechanical and thermal properties at high temperature were conducted and the comparisons are done with the SM 490 that has the same mechanical one.

Microstructural Analysis and High Temperature Compression Behavior of High Temperature Degradation on Hastelloy X (Hastelloy X의 고온열화에 따른 미세구조 및 고온압축특성)

  • Kim, Gil-Su;Jo, Tae-Sun;Seo, Young-Ik;Ryu, Woo-Seog;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.318-322
    • /
    • 2006
  • Short-term high temperature degradation test was conducted on Hastelloy X, a candidate tube material for high temperature gas-cooled reactors (HTGR), to evaluate the variation of microstructure and mechanical property in air at $1050^{\circ}C$ during 2000 h. The dominant oxide layer was Cr-oxide and a very shallow Cr-depleted region was observed below the oxide layer. At the beginning of degradation, the island shape $M_6C$ precipitate (M=Mo-rich, Fe, Ni, Cr) was observed in matrix region. After 2000 h degradation, precipitate shape was changed to the chain shape and increased amount of precipitate. These results influenced mechanical property of the specimen which exposed in high temperature. Yield strength was decreased from 115MPa to 89 MPa after 24 h and 2000 h exposure, respectively.

Application of Advanced Indentation System for Evaluati Tensile Property Degradation of Cr-Mo Steel (Cr-Mo 강의 열화도 평가를 위한 Advanced Indentation System의 응용)

  • Jang, Jae-Il;Choi, Yoel;Lee, Yun-Hee;Kwon, Dong-Il;Kim, Jeoung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.231-236
    • /
    • 2001
  • A newly developed Advanced Indentation System (AIS), which is a portable and nondestructive system for evaluating tensile properties, was used to measure mechanical behavior of materials used under high temperature and pressure conditions. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. Aging effects of Cr-Mo and Cr-Mo-V steel at high temperature were simulated. Tensile properties including yield strength and tensile strength at various temperature are obtained from the test. For all test materials and conditions, the AIS-derived results were in good agreement with those from conventional standard test method. Examples of the test results ate given and potential applications of the AIS to assess the integrity of aging structures are briefly discussed.

  • PDF

Aging Behavior and Effect of Heat Treatment on High Temperature Mechanical Properties in Ti-15V-3AI-3Cr-3Sn (Ti-15V-3Al합금의 시효거동과 열처리에 따른 고온 기계적 특성)

  • Lee Jae Won;Lee Back-Hee;Lee Kyu Hwan;Kim Young Do
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Titanium alloys are the one of promising candidate materials for medium high temperature parts in the aircraft, automobile, petrochemistry and electrochemistry because of their high strength with low density in medium high temperature. In this study, the effects of aging and heat treatments on the mechanical properties of Ti-15-3 alloy in medium high temperature, which was $400^{\circ}C$, were studied. Solid solution treatment was performed at $8000^{\circ}C$ of $\beta$ phase region for 1 h and the alloy was quenched in water. The alloy was aged at $5000^{\circ}C$ of $\alpha$ and $\beta$ two-phase region for 1, 2, 4, 8, ... and 100 h to increase the mechanical property. The $\beta$ single phase was observed at all parts of specimens in Ti-15-3 alloy after ST. As the aging at $500^{\circ}C$, fine precipitates of a phase was generated from matrix of $\beta$ phase and the microstructure was consisted of weaving structure such as Widmanstiitten a phase. The most suitable aging time is 24h in$ 400^{\circ}C$. At this time, strength is 1164 MPa and elongation is about 12%. In room temperature, elongation of Ti-15-3 alloy aged at $500^{\circ}C$ for 16 h is poor (=3%) in spite of high tensile strength (1458 MPa).