• Title/Summary/Keyword: Mechanical properties at high temperatures

Search Result 379, Processing Time 0.029 seconds

Mechanical Properties of High Strength Aluminum Alloy Composites Reinforced by SiC Particulates (SiC 입자로 분산 강화된 고력 알루미늄 합금 복합재료의 기계적 성질)

  • Lee, Eui-Gil;Choi, Woon;Nam, Seung-Eui
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.164-169
    • /
    • 1997
  • Mechanical properties of aluminum-matrix composites, fabricated by dispersion of fine SiC particulates of which size was less than 1 ${\mu}m$ into 2024 and 7075 aluminum alloys, have been investigated. Homogeneous mixing between the matrix and SiC particulates could be achieved by jar milling for 8 hours with appropriate processing agent. At temperatures below 473K, high-temperature tensile strength of the composites was higher than that of the 2024 and 7075 aluminum alloys which were used as matrix materials. However, tensile strength of the composites was approximated to that of the matrix materials at 573K. Thus, it could be suggested that effects of particle dispersion on tensile strength of aluminum alloys was diminished at temperatures higher than 573K.

  • PDF

Fracture Resistances of Y2O3 Particle Dispersion Strengthened 9Cr Steel at Room Temperature and High Temperatures (Y2O3 입자 분산강화 9Cr 강의 상온 및 고온 파괴저항특성)

  • Yoon, Ji Hyun;Kang, Suk Hoon;Lee, Yongbok;Kim, Sung Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The fracture resistance and tensile properties of $Y_2O_3$ oxide dispersion strengthened steel containing 9 wt% Cr(9Cr-ODS) were measured at various temperatures up to $700^{\circ}C$. The fracture characteristics were compared with those of commercial E911 ferritic/martensitic steel. The strength of 9Cr-ODS was at least 30% higher than that of E911 steel at the test temperatures below $500^{\circ}C$. The strength difference between the two materials was almost diminished at $700^{\circ}C$. 9Cr-ODS showed cleavage fracture behavior at room temperature and unstable crack growth behaviors at $300^{\circ}C$ and $500^{\circ}C$. The J-R fracture resistance of 9Cr-ODS was much lower than that of E911 steel at all temperatures. It was deduced that the coarse $Cr_2O_3$ particles that were formed during the alloying process provided the crack initiation sites of cleavage fracture in 9Cr-ODS.

Effects of Tempering Treatment on Microstructure and Mechanical Properties of Cu-Bearing High-Strength Steels (템퍼링에 따른 Cu 첨가 고강도강의 미세조직과 기계적 특성)

  • Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.550-555
    • /
    • 2014
  • The present study deals with the effects of tempering treatment on the microstructure and mechanical properties of Cu-bearing high-strength steels. Three kinds of steel specimens with different levels of Cu content were fabricated by controlled rolling and accelerated cooling, ; some of these steel specimen were tempered at temperatures ranging from $350^{\circ}C$ to $650^{\circ}C$ for 30 min. Hardness, tensile, and Charpy impact tests were conducted in order to investigate the relationship of microstructure and mechanical properties. The hardness of the Cu-added specimens is much higher than that of Cu-free specimen, presumably due to the enhanced solid solution hardening and precipitation hardening, result from the formation of very-fine Cu precipitates. Tensile test results indicated that the yield strength increased and then slightly decreased, while the tensile strength gradually decreased with increasing tempering temperature. On the other hand, the energy absorbed at room and lower temperatures remarkably increased after tempering at $350^{\circ}C$; and after this, the energy absorbed then did not change much. Suitable tempering treatment remarkably improved both the strength and the impact toughness. In the 1.5 Cu steel specimen tempered at $550^{\circ}C$, the yield strength reached 1.2 GPa and the absorbed energy at $-20^{\circ}C$ showed a level above 200 J, which was the best combination of high strength and good toughness.

Interfacial Reaction on Heat Treatment of Roll-bonded STS304/Al1050/STS439 Clad Materials and its Effect on the Mechanical Properties (압연 제조된 STS439/Al1050/ STS304 Clad소재의 열처리에 따른 계면 반응과 기계적 특성에서의 계면 반응 효과)

  • Song, Jun-Young;Kim, In-Kyu;Lee, Young-Seon;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.910-915
    • /
    • 2011
  • The microstructures and mechanical properties of roll-bonded STS439/Al1050/STS304 clad materials were investigated after an annealing process at various temperatures. Interfacial layer was developed at the STS439/Al1050 and Al1050/STS304 interfaces at $550^{\circ}C$. STS439/Al1050/STS304 clad metals fractured suddenly in a single step and the fracture decreased with increasing annealing temperatures at $450^{\circ}C$. After annealing at $550^{\circ}C$, samples fractured in three steps with each layer fracturing independently. Interfacial layers formed at $550^{\circ}C$ with a high Vickers microhardness were found to be brittle. During tensile testing, periodic parallel cracks were observed at the interfacial reaction layer. Observed micro-void between Al1050 and the interfacial layer was found to weaken the Al1050/reaction layer interface, leading to the total separation between Al1050 and the reaction layer.

Evaluation on Mechanical Properties of PP and Jute Fiber Concrete at Elevated Temperatures (PP섬유 및 Jute섬유를 혼입한 콘크리트의 고온 역학적 특성 평가)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Choe, Gyoeng-Choel;Lee, Young-Wook;Han, Sang-Hyu;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.34-35
    • /
    • 2014
  • In this study, the effects of high temperatures on the compressive strength and elastic modulus of HPC with pp and jute fiber (jute fiber addition ratio: 0.075 vol%; length: 12 mm; PP fiber addition ratio: 0.075 vol%; length: 12 mm) were experimentally investigated. The work was intended to clarify the influence of elevated temperatures ranging from 20 to 500℃ on the material mechanical properties of HPC at 80 MPa.

  • PDF

Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application (액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

Evolution of Remnant State Variables and Linear Material Moduli in a PZT Cube under Compressive Stress at Room and High Temperatures (상온과 고온에서 압축하중을 받는 PZT에서의 잔류상태변수와 선형재료상수의 변화)

  • Ji, Dae Won;Kim, Sang-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.82-86
    • /
    • 2013
  • A poled lead zirconate titanate (PZT) cube specimen is subjected to impulse-type compressive stress with increasing magnitude in parallel to the poling direction at four room and high temperatures. During the ferroelastic domain switching induced by the compressive stress, electric displacement in the poling direction and longitudinal and transverse strains are measured. Using the measured responses, linear material properties, namely, the piezoelectric and elastic compliance coefficients, are evaluated by a graphical method, and the effects of stress and temperature are analyzed. Finally, the dependency of the evaluated linear material properties on relative remnant polarization is analyzed and discussed.

Characteristics of Mechanical Properties at Elevated Temperatures and Residual Stresses in Welded joint of SM570-TMC Steel (SM570-TMC 강의 고온 시 기계적 성질 및 용접접합부의 잔류응력 특징)

  • Lee, Chin Hyunng;Chang, Kyong Ho;Park, Hyun Chan;Lee, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.395-403
    • /
    • 2006
  • Recently constructed bridges often have long spans and simple structure details considering not only the function but other important factors such as aesthetics, maintenance, construction duration and life cycle cost. Therefore, bridges require high-performance steels like extra-thick plate steels and thermo-mechanical control process (TMCP) steels. TMCP stels are now gaining wide attention due to their weldability improved strength and toughness. Recently, SM570-TMC steel, which is a high-strength TMCP steel with a tensile strength of 600 MPa, has been developed and applied to steel structures. However, using this steel in building steel structures requires the elucidation of not only material characteristics but also the mechanical characteristic of welded joints. In this study, high-temperature tensile properties of SM570-TMC steel were investigated through the elevated temperature welded joints of SM570-TMC steel were studied through the three-dimensional thermal elasticplastic analyses on the basis of mechanical properties at high temperatures obtained from the experiment.

Evaluation of Mechanical Properties for AZ31 Magnesium Alloy(1) (AZ31 마그네슘 합금 판재의 기계적 특성 평가(1))

  • Won S.Y.;Oh S.K.;Osakada Kozo;Park J.K.;Kim Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.53-56
    • /
    • 2004
  • The mechanical properties and optical micrographs are studied for rolled magnesium alloy sheet with hexagonal close packed structure(HCP) at room and elevated temperatures. Tensile properties such as tensile strength, elongation, R-value and n-value are also measured for AZ31 magnesium alloy. Magnesium with strong texture of basal plane parallel to the rolling direction usually has high R-value and plastic anisotropy at room temperature. As temperature increases, the R-value for AZ31 magnesium sheet decreases. In addition, the AZ31 sheet becomes isotropy and recrystallization above $200^{\circ}C$. Formability of magnesium alloy sheets remarkably poor at room temperature is improved by increasing temperature. Sheet forming of magnesium alloy is practically possible only at high temperature range where plastic anisotropy disappears.

  • PDF