• Title/Summary/Keyword: Mechanical performance test

Search Result 2,614, Processing Time 0.028 seconds

The Mechanical Properties of WC-CoFe Coating Sprayed by HVOF (고속화염용사코팅으로 제조된 WC-CoFe 코팅의 기계적 특성에 관한 연구)

  • Joo, Yun-Kon;Cho, Tong-Yul;Ha, Sung-Sik;Lee, Chan-Gyu;Chun, Hui-Gon;Hur, Sung-Gang;Yoon, Jae-Hong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.1
    • /
    • pp.6-13
    • /
    • 2012
  • HVOF thermal spray coating of 80%WC-CoFe powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and hard ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen by chrome plating and the brittleness of ceramics coatings. 80%WC-CoFe powder was coated by HVOF thermal spraying for the study of durability improvement of the high speed spindle such as air bearing spindle. The coating procedure was designed by the Taguchi program, including 4 parameters of hydrogen and oxygen flow rates, powder feed rate and spray distance. The surface properties of the 80%WC-CoFe powder coating were investigated roughness, hardness and porosity. The optimal condition for thermal spray has been ensured by the relationship between the spary parameters and the hardness of the coatings. The optimal coating process obtained by Taguchi program is the process of oxygen flow rate 34 FRM, hydrogen flow rate 57 FRM, powder feed rate 35 g/min and spray distance 8 inch. The coating cross-sectional structure was observed scanning electron microscope before chemical etching. Estimation of coating porosity was performed using metallugical image analysis. The Friction and wear behaviors of HVOF WC-CoFe coating prepared by OCP are investigated by reciprocating sliding wear test at $25^{\circ}C$ and $450^{\circ}C$. Friction coefficients (FC) of coating decreases as sliding surface temperature increases from $25^{\circ}C$ to $450^{\circ}C$.

Experimental Study of the Heat Transfer Rate of the Plate Fin-Tube Condenser for a Household Refrigerator (냉장고용 판형 핀-관 응축기의 열전달 성능에 관한 실험적 연구)

  • Son, Young-Woo;Lee, Jang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4802-4808
    • /
    • 2014
  • A plate-fin tube type heat exchanger has a lighter weight, approximately 30%, than the conventional circular-fin type condenser of household refrigerator. Because the low weight means low cost, it can have significant effects on the growth of related businesses if similar performance can be guaranteed. To check the possibility of the use of such a plate fin-tube condenser, experimental evaluations were performed in this study. Four different condensers including a conventional circular fin-tube condenser were used for the test. A well designed refrigerant supply system was used to supply similar conditions with a refrigerator, and the heat transfer rate and pressure drops of air side were measured precisely. As a result, the plate fin-tube type condensers showed a lower heat transfer rate of more than 13% than the conventional circular fin-tube type condenser, but the air side pressure drop was reduced and the heat transfer per unit weight was increased. Therefore, it shows the possibility of the use of a plate fin-tube type condenser after optimizing the air flow path and increasing the air flow to make a similar heat transfer rate.

Interfacial Properties and Stress-Cure Sensing of Single-Shape Memory Alloy (SMA) Fiber/Epoxy Composites using Electro-Micromechanical Techniques (미세역학적 시험법을 이용한 단-섬유 형태 형상기억합금/에폭시 복합재료의 계면특성 및 응력-경화 감지능)

  • Jang, Jung-Hoon;Kim, Pyung-Gee;Wang, Zuo-Jia;Lee, Sang-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • It is well know that the structure of shape memory alloy (SMA) can change from martensite austenite by either temperature or stress. Due to their inherent shape recovery properties, SMA fiber can be used such as for stress or cure-monitoring sensor or actuator, during applied stress or temperature. Incomplete superelasticity was observed as the stress hysteresis at stress-strain curve under cyclic loading test and temperature change. Superelasticity behavior was observed for the single-SMA fiber/epoxy composites under cyclic mechanical loading at stress-strain curve. SMA fiber or epoxy embedded SMA fiber composite exhibited the decreased interfacial properties due to the cyclic loading and thus reduced shape memory performance. Rigid epoxy and the changed interfacial adhesion between SMA fiber and epoxy by the surface treatment on SMA fiber exhibited similar incomplete superelastic trend. Epoxy embedded single SMA fiber exhibited the incomplete recovery during cure process by remaining residual heat and thus occurring residual stress in single SMA fiber/epoxy composite.

  • PDF

An Experimental Study on the High Strength Lightweight Self-Compacting Concrete (고강도경량 자기충전콘크리트에 관한 실험적 연구)

  • Choi Yun-Wang;Kim Yong-Jic;Moon Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.923-930
    • /
    • 2005
  • This paper was to evaluate the high strength lightweight self-compacting concrete(HLSCC) manufactured by Nan-Su, which main factor, Packing Factor(PF) for mixing design, has been modified and improved. We have examined HLSCC performance at its fresh condition as well as its mechanical properties at the hardened condition. The evaluation of HLSCC fluidity has been conducted per the standard of second class rating of JSCE, by three categories of flowability(slump-flow), segregation resistance ability(time required to reach 500mm of slump-flow and time required to flow through V-funnel) and filling ability(U-box test) of fresh concrete. The compressive strength of HLSSC at 28 days has come out to more than 30MPa in all mixes. The relationship between the compressive strength-splitting tensile strength and compressive strength-modulus of elasticity of HLSSC were similar those of typical lightweight concrete. Compressive strength and dry density of HLSCC at 28 days from the multiple regression analysis resulted as $f_c=-0.16LC-0.008LS+50.05(R=0.83)\;and\;f_d=-3.598LC-2.244LS+2,310(R=0.99)$, respectively.

A Study on the Elaboration of Request for Proposal of Localization Parts using AHP method (AHP 기법을 적용한 부품국산화 제안요청서 정교화 연구)

  • Song, Hyeong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • The purpose of this study is to elaborate the request for proposal (RFP) for the localization parts development support project of core parts carried out by the Defense Agency for Technology and Quality. The RFP is the most important document throughout the localization parts project, including project announcement and developer selection, design and test of the development product, final evaluation, and standardization of the project. However, if the RFP is not established at the beginning of the project, there is an increased risk of business failure due to frequent changes by various reasons. In this study, we recognized the necessity of elaboration of RFP and applied the AHP method for quantitative elaboration. Eight requirements of the RFP related to the mechanical/electrical performance of localized development products and three elaboration methods for each requirement were designed in a hierarchical structure, and each weight was calculated by applying the 5-point scale AHP method. The AHP survey was conducted with 20 developers participating in the localization parts project, and the consistency ratio of the AHP survey result was less than 0.1. The elaboration method with the highest value among the calculated weights is classified, and the analysis results and future research directions of the elaboration method are presented.

Convective Boiling of R-410A in an Aluminum Flat Tube for Air-Conditioning Application (공조용 알루미늄 납작관 내의 R-410A 대류 비등)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3006-3013
    • /
    • 2015
  • Flat tube heat exchangers can improve the thermal performance significantly compared with round tube heat exchangers. For proper design of flat tube heat exchangers, one should know the tubeside heat transfer coefficients. In this study, convective boiling heat transfer coefficients of R-410A were obtained in a flat extruded aluminum tube with $D_h=1.41mm$. The test range covered mass flux from 200 to $600kg/m^2s$, heat flux from 5 to $15kW/m^2$ and saturation temperature from $5^{\circ}C$ to $15^{\circ}C$. The heat transfer coefficient curve shows a decreasing trend after a certain quality(critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kaew-On et al. correlations reasonably predicted the present data.

Evaluation for Adhesion Characteristics of UV-curable Bump Shape Stamp for Transfer Process (전사공정을 위한 UV 경화성 범프형 스탬프의 점착특성 평가)

  • Jeong, Yeon-Woo;Kim, Kyung-Shik;Lee, Chung-Woo;Lee, Jae-Hak;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.75-81
    • /
    • 2016
  • Future electronics such as electronic paper and foldable cellphone are required to be flexible and transparent and should have a high performance. In order to fabricate the flexible electronics using flexibility transfer process, techniques for transferring various devices from rigid substrate onto flexible substrate by elastomeric stamp, have been developed. Adhesion between the elastomeric stamp and various devices is crucial for successful transfer process. The adhesion can be controlled by the thickness of the stamp, separation velocity, contact load, and stamp surface treatment. In this study, we fabricated the bump shape stamp consisting of a UV-curable polymer and investigated the effects of curing condition, separation velocity, and contact load on the adhesion characteristics of bumps. The bumps with hemispherical shape were fabricated using a dispensing process, which is one of the ink-jet printing techniques. Curing conditions of the bumps were controlled by the amount of UV irradiation energy. The adhesion characteristics of bumps are evaluated by adhesion test. The results show that the pull-off forces of bumps were increased and decreased as UV irradiation energy increased. For UV irradiation energies of 300 and 500 mJ/cm2, the pull-off forces were increased as the separation velocity increased. The pull-off forces also increased with the increase of contact load. In the case of UV irradiation energy above 600 mJ/cm2, however, the pull-off forces were not changed. Therefore, we believe that the bump shape stamp can be applied to roll-based transfer process and selective transfer process as an elastomeric stamp.

A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device (파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석)

  • Kim, Bohoon;Yoh, Jai-ick
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A detailed hydrodynamic analysis SW was developed to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The pyrotechnic device is composed of four main components, namely a donor unit (HNS+HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BPN) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (${\omega}_c=8.3kHz$). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

Preparation and Characterization of Nanofiltration Membrane for Recycling Alcoholic Organic Solvent (알코올성 유기용매 재활용을 위한 나노여과막의 제조와 특성평가)

  • Kim, Seong Heon;Im, Kwang Seop;Kim, Ji Hyeon;Koh, Hyung Chul;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.228-240
    • /
    • 2021
  • The organic solvent robust polybenzimidazole (PBI) membranes were prepared as organic solvent nanofiltration (OSN) membrane for the recycling of alcoholic solvents using non-solvent induced phase separation with different dope solution concentration and coagulant composition of water/ethanol mixtures to control the membrane morphology and permeation performance. Investigation on crosslinking of polybenzimidazole indicated that the membrane crosslinked with dibromoxylene (DBX) had enough mechanical strength and solvent resistance to be applied as a OSN membranes. The crosslinked PBI membrane prepared by more than 20wt% dope concentration coagulated in water showed a rejection of > 90% to Congo Red (MW of 696.66 g/mol) while pure ethanol permeances was more than 22.5 LMH/bar at 5 bar. Investigation on coagulant composition indicated that ethanol permeance through crosslinked PBI OSN membrane increased with increasing of ethanol concentration in water/ethanol mixture coagulants.

Strength and Durability Characteristics of Low-alkali Mortar for Artificial Reefs Produced by 3D Printers (인공어초 3D 프린터 출력을 위한 저알칼리 모르타르의 강도와 내구성능)

  • Lee, Byung-Jae;Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.67-72
    • /
    • 2022
  • Concrete prevents corrosion of reinforcing bars due to its strong alkalinity. However, in the sea, strong alkali components with a pH of 12 to 13 are eluted, which adversely affects the ecological environment and growth of marine organisms. In this study, the mechanical properties and durability of the low alkali mortar were evaluated for the development of a low alkali mortar for the 3D printed artificial reefs. As a result of evaluation of strength characteristics, the α-35 mixture, which were produced with fly ash, silica fume and α-hemihydrate gypsum, satisfied the strength requirement 27 MPa in terms of compressive strength. As a result of pH measurement, it was found that mixing with alpha-type hemihydrate gypsum resulted in minimizing pH due to the the formation of calcium sulfate instead of calcium hydroxide production. As a result of the chloride ion penetration resistance test, the α-35 mixture exhibited the best performance, 3844C. As a result of measuring the length change over time, the α-35 mixture showed the shrinkage 33.5% less compared to the Plain mix.